Marc Deisenroth
Marc Deisenroth
Home
Publications
Teaching
Talks
Openings
CV
Contact
1
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
,
Vincent Dutordoir
,
James Hensman
,
Marc P. Deisenroth
PDF
Cite
Code
High-Dimensional Bayesian Optimization Using Low-Dimensional Feature Spaces
Riccardo Moriconi
,
Marc P. Deisenroth
,
K. S. Sesh Kumar
Cite
Variational Integrator Networks
Steindór Sæmundsson
,
Katja Hofmann
,
Marc P. Deisenroth
Cite
Maximizing Acquisition Functions for Bayesian Optimization
Bayesian optimization is a sample-efficient approach to global optimization that relies on theoretically motivated value heuristics …
James T. Wilson
,
Frank Hutter
,
Marc P. Deisenroth
PDF
Cite
Code
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
,
Ching-an Cheng
,
Byron Boots
,
Marc P. Deisenroth
PDF
Cite
Code
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
,
Katja Hofmann
,
Marc P. Deisenroth
PDF
Cite
Code
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
,
Marc P. Deisenroth
PDF
Cite
Code
Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches
Simon Olofsson
,
Marc P. Deisenroth
,
Ruth Misener
PDF
Cite
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
,
Hugh Salimbeni
,
Marc P. Deisenroth
,
James Hensman
PDF
Cite
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
,
Marc P. Deisenroth
PDF
Cite
Code
«
»
Cite
×