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Problem setup

nonlinear state space model, sequential data:

xtxt−1 xt+1

transition function

measurement function

observed variables

hidden states

xt = f(xt−1) + wt

yt = g(xt) + vt

f ff f

g g g

ytyt−1 yt+1

objective: compute p(xt|y1:t): distribution of hidden state xt given observations
y1, . . . ,yt (filter distribution)
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Three steps for a filter update

1) predict next hidden state 2) predict observation 3) update hidden state using
evidence of new observation

xt

yt

filter step

observe yt

p(xt|y1:t)

xtxt−1
f

p(xt|y1:t−1)p(xt−1|y1:t−1)

xt

yt

g

p(yt|y1:t−1)

p(xt|y1:t−1)

transition dynamics f and measurement function g linear Kalman filter

here: f and g nonlinear approximations required

common assumption: xt,yt|y1:t−1 are jointly normal
filter update (step 3) is a Gaussian conditional

concentrate on predictions in the following
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Some approximate algorithms for predictions

basic setup:

Gaussian input distribution

predictive distribution is approximated by a Gaussian

first idea: approximate the function

Extended Kalman Filter (EKF)
linearizes the function (Taylor series) and applies Kalman filter
predictive distribution: exact for the linearized model
requires parametric form of the function (derivatives)

linear function approximation can be bad
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2. Unscented Kalman filter (UKF)

second idea: “approximating a distribution is often easier than
approximating a function” (Julier and Uhlmann, 1997)

approximate input distribution by finite number of sigma points
(deterministically chosen “samples”/“particles”)

predictive distribution: distribution of sigma points after mapping them
through original function

requires a) access to the function, b) noise variance

g

X Y
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Prediction problems in the UKF

x

f (x)

does not preserve the exact predictive mean/covariance

predictive distribution can be overconfident! (or too cautious)
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3. Approximation in function space

xtxt−1 xt+1

transition function

measurement function

observed variables

hidden states

xt = f(xt−1) + wt

yt = g(xt) + vt

f ff f

g g g

ytyt−1 yt+1

approximate the function

use Gaussian processes (GPs) to model the transition function f and the
measurement function g

no parametric model required, more flexible than linearization (EKF)

can be used if the “true functions” f and g are no longer accessible

additional source of uncertainty: model uncertainty
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GP filters

1 GP-UKF (Ko and Fox, 2007–2009): predict by squashing sigma points
through GP model (combine UKF with GPs); sample average of model
uncertainty

2 GP-ADF (our work): compute exact mean and covariance of predictive
distribution (exact moment matching) according to Quiñonero-Candela et
al. (2003); integrate out model uncertainty
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Single filter step
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1) predict next hidden state 2) predict observation 3) update hidden state using
evidence of new observation

xt

yt

filter step

observe yt

p(xt|y1:t)

xtxt−1
f

p(xt|y1:t−1)p(xt−1|y1:t−1)

xt

yt

g
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p(xt|y1:t−1)

1 pick initial distribution

2 draw sample and map it through
transition function f to

3 map through measurement
function g

4 observe
infer from initial distribution

and
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Single filter step
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Single filter step
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Wrap-up

summary

I GP-ADF: coherent filter algorithm for nonlinear state space models

I transition dynamics and measurement model are described by GPs

I prediction and filtering can be done analytically

I consistent predictions in contrast to UKF, GP-UKF

I current limitation: requires access to hidden state to train GP models

current projects:

I extension to smoothing

I parameter learning no need for ground truth observations in latent space
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