Analytic Moment-based Gaussian Process Filtering

Marc Peter Deisenroth

International Conference on Machine Learning (ICML) Montreal, Canada

June 15, 2009

joint work with Marco F. Huber 1,2 and Uwe D. Hanebeck 1

¹ Faculty for Informatics, Universität Karlsruhe (TH), Germany
² Fraunhofer Institute for Information and Data Processing, Germany

Problem setup

nonlinear state space model, sequential data:

measurement function

objective: compute $p(\mathbf{x}_t | \mathbf{y}_{1:t})$: distribution of hidden state \mathbf{x}_t given observations $\mathbf{y}_1, \dots, \mathbf{y}_t$ (filter distribution)

Introduction Filtering Results Summary

Three steps for a filter update

1) predict next hidden state

2) predict observation

3) update hidden state using evidence of new observation

Introduction Filtering Results Summary

Three steps for a filter update

1) predict next hidden state

2) predict observation

3) update hidden state using evidence of new observation

• transition dynamics f and measurement function g linear \rightarrow Kalman filter

- here: f and g nonlinear \rightarrow approximations required
- common assumption: $\mathbf{x}_t, \mathbf{y}_t | \mathbf{y}_{1:t-1}$ are jointly normal
 - \rightarrow filter update (step 3) is a Gaussian conditional
- → concentrate on predictions in the following

Some approximate algorithms for predictions

basic setup:

- Gaussian input distribution
- predictive distribution is approximated by a Gaussian

Some approximate algorithms for predictions

basic setup:

- Gaussian input distribution
- predictive distribution is approximated by a Gaussian

first idea: approximate the function

- Extended Kalman Filter (EKF)
 - $\ \ \, \rightarrow$ linearizes the function (Taylor series) and applies Kalman filter
 - $\buildrel \rightarrow$ predictive distribution: exact for the linearized model
 - → requires parametric form of the function (derivatives)
- linear function approximation can be bad

Introduction Filtering Results Summary EKF UKF GP-filters

2. Unscented Kalman filter (UKF)

- second idea: "approximating a distribution is often easier than approximating a function" (Julier and Uhlmann, 1997)
- approximate input distribution by finite number of sigma points (deterministically chosen "samples" / "particles")
- predictive distribution: distribution of sigma points after mapping them through original function
- requires a) access to the function, b) noise variance

Introduction Filtering Results Summary

EKF UKF GP-filters

Prediction problems in the UKF

- does not preserve the exact predictive mean/covariance
- predictive distribution can be overconfident! (or too cautious)

EKF UKF GP-filters

3. Approximation in function space

measurement function

approximate the function

- \bullet use Gaussian processes (GPs) to model the transition function f and the measurement function g
- no parametric model required, more flexible than linearization (EKF)
- $\bullet\,$ can be used if the "true functions" f and g are no longer accessible
- additional source of uncertainty: model uncertainty

GP filters

 GP-UKF (Ko and Fox, 2007–2009): predict by squashing sigma points through GP model (combine UKF with GPs); sample average of model uncertainty

GP filters

- GP-UKF (Ko and Fox, 2007–2009): predict by squashing sigma points through GP model (combine UKF with GPs); sample average of model uncertainty
- GP-ADF (our work): compute exact mean and covariance of predictive distribution (exact moment matching) according to Quiñonero-Candela et al. (2003); integrate out model uncertainty

• given an initial state distribution $p(x_0) = \mathcal{N}(\mu_0, \sigma_0^2 = 0.5^2)$ compute $p(x_1)$ given an observation y_1

• given an initial state distribution $p(x_0) = \mathcal{N}(\mu_0, \sigma_0^2 = 0.5^2)$ compute $p(x_1)$ given an observation y_1

• given an initial state distribution $p(x_0) = \mathcal{N}(\mu_0, \sigma_0^2 = 0.5^2)$ compute $p(x_1)$ given an observation y_1

• given an initial state distribution $p(x_0) = \mathcal{N}(\mu_0, \sigma_0^2 = 0.5^2)$ compute $p(x_1)$ given an observation y_1

Wrap-up

summary

- ► GP-ADF: coherent filter algorithm for nonlinear state space models
- transition dynamics and measurement model are described by GPs
- prediction and filtering can be done analytically
- consistent predictions in contrast to UKF, GP-UKF
- current limitation: requires access to hidden state to train GP models

Wrap-up

summary

- GP-ADF: coherent filter algorithm for nonlinear state space models
- transition dynamics and measurement model are described by GPs
- prediction and filtering can be done analytically
- consistent predictions in contrast to UKF, GP-UKF
- current limitation: requires access to hidden state to train GP models

current projects:

- extension to smoothing
- \blacktriangleright parameter learning \rightarrow no need for ground truth observations in latent space

Wrap-up

summary

- ▶ GP-ADF: coherent filter algorithm for nonlinear state space models
- transition dynamics and measurement model are described by GPs
- prediction and filtering can be done analytically
- consistent predictions in contrast to UKF, GP-UKF
- current limitation: requires access to hidden state to train GP models

current projects:

- extension to smoothing
- ▶ parameter learning → no need for ground truth observations in latent space

acknowledgement

ICML student scholarship

References

Simon J. Julier and Jeffrey K. Uhlmann.

A New Extension of the Kalman Filter to Nonlinear Systems.

In Proceedings of AeroSense: 11th Symposium on Aerospace/Defense Sensing, Simulation and Controls, pages 182–193, Orlando, FL, USA, 1997.

Jonathan Ko and Dieter Fox.

GP-BayesFilters: Bayesian Filtering Using Gaussian Process Prediction and Observation Models.

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3471–3476, Nice, France, September 2008.

Jonathan Ko and Dieter Fox.

Gp-BayesFilters: Bayesian Filtering using Gaussian Process Prediction and Observation Models.

Autonomous Robots, 2009.

Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, and Carl E. Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—Application to Multiple-Step Ahead Forecasting.

In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003), volume 2, pages 701–704, April 2003.