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Introduction

Problem setup

nonlinear state space model, sequential data:

transition function Xt = f(X¢-1) + Wy

hidden states LI I

observed variables ye=9(x) + vy

measurement function

objective: compute p(x:|y;.;): distribution of hidden state x; given observations
¥i,---,¥, (filter distribution)
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Introduction

Three steps for a filter update
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1) predict next hidden state 2) predict observation
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observe y,

3) update hidden state using
evidence of new observation
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Three steps for a filter update

P(Xi-1]Y1e-1) p(xely1e-1) P(Xe]y1:-1) p(xily1e)

O—— O O

"-filter step
P(Yilyis-1) observe y,
1) predict next hidden state 2) predict observation 3) update hidden state using

evidence of new observation

@ transition dynamics f and measurement function g linear =+ Kalman filter
@ here: f and g nonlinear =» approximations required

@ common assumption: X, y,|y1.;_; are jointly normal
= filter update (step 3) is a Gaussian conditional

= concentrate on predictions in the following
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Filtering EKF UKF GP-fi

Some approximate algorithms for predictions

basic setup:
@ Gaussian input distribution

@ predictive distribution is approximated by a Gaussian
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Filtering EKF UKF G

Some approximate algorithms for predictions

basic setup:
@ Gaussian input distribution

@ predictive distribution is approximated by a Gaussian

first idea: approximate the function
@ Extended Kalman Filter (EKF)
= linearizes the function (Taylor series) and applies Kalman filter
= predictive distribution: exact for the linearized model
= requires parametric form of the function (derivatives)

@ linear function approximation can be bad
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Filtering EKF UKF G

2. Unscented Kalman filter (UKF)

@ second idea: “approximating a distribution is often easier than
approximating a function” (Julier and Uhlmann, 1997)

@ approximate input distribution by finite number of sigma points
(deterministically chosen “samples” / “particles” )

@ predictive distribution: distribution of sigma points after mapping them
through original function

@ requires a) access to the function, b) noise variance
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Filtering EKF UKF

Prediction problems in the UKF

@ does not preserve the exact predictive mean/covariance

@ predictive distribution can be overconfident! (or too cautious)
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Filtering EKF UKF GP-filters

3. Approximation in function space

transition function

hidden states LI

observed variables

measurement function

approximate the function

x; = f(xe-1) + Wy

ye=9(x) + v

@ use Gaussian processes (GPs) to model the transition function f and the

measurement function g

@ no parametric model required, more flexible than linearization (EKF)

@ can be used if the “true functions” f and g are no longer accessible

@ additional source of uncertainty: model uncertainty
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Filtering EKF UKF GP-filters

GP filters

@ GP-UKF (Ko and Fox, 2007-2009): predict by squashing sigma points
through GP model (combine UKF with GPs); sample average of model
uncertainty
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Filtering EKF UKF GP-filters

GP filters

@ GP-UKF (Ko and Fox, 2007-2009): predict by squashing sigma points
through GP model (combine UKF with GPs); sample average of model
uncertainty

@ GP-ADF (our work): compute exact mean and covariance of predictive
distribution (exact moment matching) according to Quifionero-Candela et
al. (2003); integrate out model uncertainty
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plxalyie) pOxilyra-1) plxilyre) pxilyie)
g Hilter step
PYilyie) observe y,

1) predict next hidden state 2) predict observation 3) update hidden state using

evidence of new observation

pick initial distribution
draw sample and map it through
transition function f to e

map e through measurement
function g

observe m
= infer ® from initial distribution
and m

Analytic Moment-based Gaussian Process Filtering



Results

Single filter step
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e given an initial state distribution p(z¢) = N (po, 0§ = 0.5%) compute p(z1)
given an observation y;
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Single filter step
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e given an initial state distribution p(z¢) = N (po, 0§ = 0.5%) compute p(z1)
given an observation y;
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Single filter step
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e given an initial state distribution p(z¢) = N (po, 0§ = 0.5%) compute p(z1)
given an observation y;
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Single filter step
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e given an initial state distribution p(z¢) = N (po, 0§ = 0.5%) compute p(z1)
given an observation y;
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Summary
Wrap-up

summary

» GP-ADF: coherent filter algorithm for nonlinear state space models
» transition dynamics and measurement model are described by GPs
» prediction and filtering can be done analytically

» consistent predictions in contrast to UKF, GP-UKF

» current limitation: requires access to hidden state to train GP models
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summary

» GP-ADF: coherent filter algorithm for nonlinear state space models
» transition dynamics and measurement model are described by GPs
» prediction and filtering can be done analytically

» consistent predictions in contrast to UKF, GP-UKF

» current limitation: requires access to hidden state to train GP models

current projects:
> extension to smoothing

» parameter learning =+ no need for ground truth observations in latent space
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