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Model-based Reinforcement Learning

§ Models of the transition function

§ Learned model serves as a proxy of real environment

§ Learn policy using the model instead of the environment
Reduce interactions with the system

§ Model bias/errors
§ Probabilistic prediction models in RL

§ Account for uncertainty Mitigate effect of model errors
§ Exploration (“natural” and “safe”)
§ Meta learning
§ Incorporation of engineering priors
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Model Errors/Bias

Model learning problem: Find a function f : x ÞÑ f pxq “ y
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Predictions? Decision Making?
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Model Errors/Bias

Model learning problem: Find a function f : x ÞÑ f pxq “ y
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Predictions? Decision Making? Model Errors!
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Model Errors/Bias

Model learning problem: Find a function f : x ÞÑ f pxq “ y
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Express uncertainty about the underlying function to be
robust to model errors
Gaussian process for model learning (Rasmussen & Williams, 2006)
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Fast Reinforcement Learning
PILCO Framework: High-Level Steps

1. Learn probabilistic model of transition function

2. Compute long-term predictions and expected cost/reward using
the model

3. Policy improvement

4. Apply controller to system

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Probabilistic Model Essential?
DEMO

§ Probabilistic model: GP

§ Deterministic model: Mean function of GP (still nonparametric)

Table: Average learning success with nonparametric (NP) transition models

GP “Deterministic” GP
Learning success 94.52% 0%

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Standard Benchmark Problem: Cart-Pole Swing-up

C KK D WP RT
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C: Coulom 2002
KK: Kimura & Kobayashi 1999
D: Doya 2000
WP: Wawrzynski & Pacut 2004
RT: Raiko & Tornio 2009
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§ Swing up and balance a freely swinging pendulum on a cart

§ No knowledge about nonlinear dynamics Learn from scratch

§ Saturating cost function 1´ expp´}x´ xtarget}
2q

§ Code available at https://github.com/icl-sml/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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§ Swing up and balance a freely swinging pendulum on a cart

§ No knowledge about nonlinear dynamics Learn from scratch

§ Saturating cost function 1´ expp´}x´ xtarget}
2q

§ Code available at https://github.com/icl-sml/pilco-matlab

§ Unprecedented learning speed compared to state-of-the-art
Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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Other Real-World Applications

with D Fox with P Englert et al. with A Kupcsik et al.

B Bischoff (Bosch), ECML 2013 A McHutchon (U Cambridge) with B Bischoff et al.

Application to a wide range of robotic systems
Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching
Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics
Kupcsik et al. (AAAI, 2013): Data-Efficient Generalization of Robot Skills with Contextual Policy Search
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Safe Exploration

§ Deal with real-world safety constraints

§ Use probabilistic model to predict whether constraints are
violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)

§ Adjust policy if necessary (during policy learning)

Safe exploration within an MPC-based RL setting
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Probabilistic MPC in RL
§ GP model for transition dynamics
§ Repeat (while executing the policy):

1. In current state xt, determine optimal control sequence u˚1 , . . . , u˚H
2. Apply first control u˚1 in state xt

3. Transition to next state xt`1

4. Update transition model

§ Theoretical guarantees with GP dynamics models via
Pontryagin’s Maximum Principle

§ Principled treatment of state/control constraints

§ Including the most recent state transition in the model
significantly improves robustness to model errors

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Experimental Results: Constraints

u

Trial # (3 sec or less per trial)
S
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%

PILCO
GP-MPC-Var
GP-MPC-Mean

PILCO 16/100 constraint violations
GP-MPC-Mean 21/100 constraint violations
GP-MPC-Var 3/100 constraint violations

Propagating model uncertainty important for safety

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Meta Learning
§ Different robot configurations (link lengths, weights, ...)

§ Re-use experience gathered so far generalize to new dynamics
that are similar

§ Accelerated learning

Approach:

§ Model (unknown) configurations with latent variable

§ Disentangle global and task specific properties

§ Online inference of models of unseen configurations

§ Few-shot model-based RL

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta Model Learning with Latent Variables
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§ GP captures global properties of the dynamics

§ Latent variable h describes local configuration
Variational inference to learn latent configuration

§ Fast online inference of new configurations (no model re-training
required)

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Latent Embeddings

Length

Mass

l = 0.4

l = 0.5

l = 0.6
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§ Latent variable h encodes length l and mass m of the cart pole

§ 6 training tasks, 14 held-out test tasks

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta-RL (Cart Pole): Training

§ Pre-trained on 6 training configurations until solved

Model Training (s) Description
Independent 16.1 ˘ 0.4 Independent GP-MPC
Aggregated 23.7 ˘ 1.4 Aggregated experience (no latents)
Meta learning 15.1 ˘ 0.5 Aggregated experience (with latents)

Meta learning can help speeding up RL

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta-RL (Cart Pole): Few-Shot Generalization
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§ Few-shot generalization on 4 unseen configurations

§ Success: solve all 10 (6 training + 4 test) tasks

§ Meta learning: blue

§ Independent (GP-MPC): orange

§ Aggregated experience model (no latents): green

Meta RL generalizes well to unseen tasks

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Wrap-up

u
Length

Mass
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l = 0.5

l = 0.6

l = 0.7
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m = 0.8

m = 0.9

§ Probabilistic models in RL
§ Reduce model bias for data-efficient RL
§ Safe exploration
§ Meta learning with latent variables for few-shot learning

§ Key to success: Probabilistic modeling and Bayesian inference

m.deisenroth@imperial.ac.uk

marc@prowler.io

Thank you for your attention
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