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Autonomous Robots

Vision: Autonomous robots support humans in everyday
activities Fast learning and automatic adaptation

Currently: Data-hungry learning or human guidance

Fully autonomous learning and decision making with little data in
real-life situations
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Central Problem

Data-Efficient Reinforcement Learning
Ability to learn and make decisions in complex domains without

requiring large quantities of data

Model-based reinforcement learning
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Reinforcement Learning

xt`1 “ f p xt , ut q `w , ut “ π p xt , θ q

State Control Policy Policy parameters
Transition function

Objective (Controller Learning)
Find policy parameters θ˚ that minimize the expected long-term cost

Jpθq “
ÿT

t“1
Ercpxtq|θs , ppx0q “ N

`

µ0, Σ0

˘

.

Instantaneous cost cpxtq, e.g., }xt ´ xtarget}
2

Typical objective in optimal control and reinforcement learning
(Bertsekas, 2005; Sutton & Barto, 1998)
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Model-based RL

Insight: If we had a realistic simulator of the world, we would
not need to run experiments in the real world, but in the cheaper
simulator (e.g., chess, Go, pacman)

Idea: Build simulator based on observed trajectories
Issue: Model errors can lead to catastrophic failures
Policy is learned only based on simulator data
How can we build better models? Probabilistic models
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y
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Observed function values
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y
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More plausible models

Predictions? Decision Making? Model Errors!
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Distribution over plausible functions

Express uncertainty about the underlying function to be
robust to model errors
Gaussian processes, Bayesian linear regression, ensembles for
model learning
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification

2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq

3 Policy improvement
4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Long-Term Predictions
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t=5

Uncertainty propagation: Iteratively compute state distributions
ppxtq, t “ 1, . . . , T .
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Uncertainty Propagation

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
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t=0
t=1

t=2

t=T

t=5

Deterministic approximate inference (implicit local
linearization)

Exact moment matching
Approximate moment matching (e.g., linearization, unscented
transformation)

Stochastic approximate inference
Trajectory sampling
Important: Compute the GP posterior after every fantasized
sample (augment dataset with fantasy data)
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Linearization

−1 −0.5 0 0.5 1
0

1

(x
t
,u

t
)

p(
x t,u

t)

−1 −0.5 0 0.5 1

x t+
1

0 1 2

x t+
1

p(x
t+1

)

Approximate nonlinear function at the mean of the distribution
with a linear function (1st-order Taylor series)
Push Gaussian through this linear function: Closed-form mean
and covariance of predictive distribution

Requires gradients of nonlinear function
Can get the true moments catastrophically wrong
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Unscented Transformation
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Approximate distribution with a small number of sigma points
Evaluate nonlinear function at those points
Compute sample statistics (mean, covariance) of predictive
distribution

Can get the true moments catastrophically wrong
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Moment Matching
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Compute mean and covariance of predictive distribution
Approximate predictive distribution with a Gaussian that
possesses the correct moments
Higher-order moments ignored
Exact moments can only be computed in special cases
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Long-Term Predictions with GPs
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Iteratively compute ppx1|θq, . . . , ppxT |θq

ppxt`1|θq “

¡

ppxt`1|xt,utq
loooooooomoooooooon

GP prediction

ppxt,ut|θq
loooooomoooooon

N pµ,Σq

df dxt dut

GP moment matching (Girard et al., 2002; Quiñonero-Candela et al.,
2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL) Uncertainty in Model-based RL October 10, 2019 15



Moment Matching: Long-Term Predictions
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Actual trajectories

Predicted trajectory
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Left: Early stages of learning (model not confident)
Right: More confident model

Predictive error bars seem reasonable
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification
2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq

3 Policy improvement
Compute expected long-term cost Jpθq
Find parameters θ that minimize Jpθq

4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Policy Improvement

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

Know how to predict ppx1|θq, . . . , ppxT |θq

Compute

Ercpxtq|θs “

ż

cpxtqN
`

xt |µt, Σt

˘

dxt , t “ 1, . . . , T ,

and sum them up to obtain Jpθq
Analytically compute gradient dJpθq{dθ
Standard gradient-based optimizer (e.g., BFGS) to find θ˚

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Standard Benchmark: Cart-Pole Swing-up

Swing up and balance a freely swinging pendulum on a cart
No knowledge about nonlinear dynamics Learn from scratch
Cost function cpxq “ 1´ expp´}x´ xtarget}

2q

Unprecedented learning speed compared to state-of-the-art

Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Marc Deisenroth (UCL) Uncertainty in Model-based RL October 10, 2019 20
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Wide Applicability

with D Fox with P Englert, A Paraschos, J Peters with A Kupcsik, J Peters, G Neumann

B Bischoff (Bosch), ESANN 2013 A McHutchon (U Cambridge)

Application to a wide range of robotic systems
Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching
Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics
Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills
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Some More Details
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Computational Demand (Inference)
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Graphs: Time required to compute gradient (one time step; 2013
laptop; single CPU)
Left: Moment matching
Right: Linearization

Linearization is significantly faster than moment matching
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Linearization vs Moment Matching
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These are NOT learning curves on training data.
Success evaluated on unseen test data

Linearization is faster (compute), but performs worse than
moment matching

Meaningful error bars are useful in RL
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Loss Function
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Typical loss function: quadratic
We use a saturating cost function instead. Why is that?
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Quadratic Loss

Assume x „ N
`

µ, Σ
˘

and cpxq “ xJx. Then

Ercpxqs “ Exrx
Jxs “ trpΣq ` µJµ

Scales quadratically in the length of µ (mean deviation from
target)
Scales linearly in the marginal uncertainty of x

If the ppxq is either centered far from the origin (target state) or
the marginal uncertainties are large, we incur high cost
In the early stages of learning, our models are uncertain, and we
are far from the target

Finding a path to the target may be very costly and even
suboptimal (if the planning horizon is not sufficiently large)
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Saturating Cost

Assume x „ N
`

µ, Σ
˘

and cpxq “ 1´ expp´1
2x
Jxq. Then

Ercpxqs “ 1´ |I `Σ|´
1
2

loooomoooon

Pr0,1s

expp´1
2µ
JpI `Σq´1µq

loooooooooooooomoooooooooooooon

Pr0,1s

P r0, 1s

For large µ (far away from the target) the cost tends to 1

The cost is only 0 if the mean prediction hits the target (µ « 0)
and the prediction is certain (Σ « 0q

Large Σ can be good (especially if µ is also large)
If µ « 0 then large Σ is not good
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Automatic Exploration
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Far away from the target, uncertainty is favored

Close to the target, uncertainty is discouraged
Saturating cost automatically deals with the
exploration/exploitation trade-off (in some sense)
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Probabilistic Model Essential?

DEMO
Probabilistic model: GP
Deterministic model: Mean function of GP (still nonparametric)

Table: Average learning success with non-parametric transition models

GP “Deterministic” GP
Learning success 94.52% 0%

Reasons for failure of deterministic model:
Model errors: Long-term predictions make absolutely no sense,
and the predicted states are nowhere near the target

No gradient signal
No automatic exploration (model and policy are deterministic)

Stochastic policy fixes this to some degree

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Other Topics

Predictive error bars are useful for debugging (code, model, RL
algorithm, ...)
Learning with sparse rewards (get reward only in a tiny area
around the goal state) can work, even in continuous state spaces
(Deisenroth & Rasmussen, 2011)
Use predictive uncertainty for safe exploration (e.g., Sui et al.,
2015; Berkenkamp et al., 2017; Kamthe & Deisenroth, 2018)
Use BO-type acquisition functions for exploration incentives
(McAllister 2017)
Meta reinforcement learning (Sæmundsson et al., 2018)
...
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Wrap-up

Data-efficient RL is often critical when working with real-world
systems
Model-based RL is one way to accelerate learning
Key: Probabilistic models reduce the effect of model errors
“Faithful” uncertainty propagation leads to faster learning
Classical quadratic losses are not good when working with
uncertainty
Saturating loss allows for automatic exploration/exploitation
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