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Autonomous Robots: Key Challenges

Three key challenges in autonomous systems:
Modeling. Predicting. Decision making.

No human in the loop “Learn” from data
Automatically extract information
Data-efficient (fast) learning
Uncertainty: sensor noise, unknown processes,
limited knowledge, ...

Robotics

Reinforcement learning
subject to data efficiency
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Reinforcement Learning

xt`1 “ f p xt , ut q `w , ut “ π p xt , θ q

State Control Policy Policy parameters
Transition function

Objective (Controller Learning)
Find policy parameters θ˚ that minimize the expected long-term cost

Jpθq “
ÿT

t“1
Ercpxtq|θs , ppx0q “ N

`

µ0, Σ0

˘

.

Instantaneous cost cpxtq, e.g., }xt ´ xtarget}
2

Typical objective in optimal control and reinforcement learning
(Bertsekas, 2005; Sutton & Barto, 1998)
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification

2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq

3 Policy improvement
4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Observed function values
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Predictions? Decision Making?
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y
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More plausible models

Predictions? Decision Making? Model Errors!
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y
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Distribution over plausible functions

Express uncertainty about the underlying function to be
robust to model errors
Gaussian process for model learning
(Rasmussen & Williams, 2006)
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Introduction to Gaussian Processes

Flexible Bayesian regression method
Probability distribution over functions
Fully specified by

Mean function m (average function)
Covariance function k (assumptions on structure)

kpxp,xqq “ Covrfpxpq, fpxqqs

Posterior predictive distribution at x˚ is Gaussian
(Bayes’ theorem):

ppfpx˚q| x˚ , X,y q “ N
`

fpx˚q |mpx˚q, σ
2px˚q

˘

Test input Training data
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Intuitive Introduction to Gaussian Processes
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Prior belief about the function

Predictive (marginal) mean and variance:

Erfpx˚q|x˚,∅s “ mpx˚q “ 0

Vrfpx˚q|x˚,∅s “ σ2px˚q “ kpx˚,x˚q
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification
2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq

3 Policy improvement
4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Long-Term Predictions
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x(2
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t=0
t=1

t=2

t=T

t=5

Iteratively compute ppx1|θq, . . . , ppxT |θq

ppxt`1|θq “

¡

ppxt`1|xt,utq
loooooooomoooooooon

GP prediction

ppxt,ut|θq
loooooomoooooon

N pµ,Σq

df dxt dut

GP moment matching
(Girard et al., 2002; Quiñonero-Candela et al., 2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Long-Term Predictions
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification
2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq

3 Policy improvement
Compute expected long-term cost Jpθq
Find parameters θ that minimize Jpθq

4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Policy Improvement

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

Know how to predict ppx1|θq, . . . , ppxT |θq

Compute

Ercpxtq|θs “

ż

cpxtqN
`

xt |µt, Σt

˘

dxt , t “ 1, . . . , T ,

and sum them up to obtain Jpθq
Analytically compute gradient dJpθq{dθ
Standard gradient-based optimizer (e.g., BFGS) to find θ˚

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Standard Benchmark: Cart-Pole Swing-up

Swing up and balance a freely swinging pendulum on a cart
No knowledge about nonlinear dynamics Learn from scratch
Cost function cpxq “ 1´ expp´}x´ xtarget}

2q

Unprecedented learning speed compared to state-of-the-art

Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Marc Deisenroth (UCL) Controlling Mechanical Systems with Learned Models November 18, 2019 14
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Probabilistic Model Essential?

DEMO
Probabilistic model: GP
Deterministic model: Mean function of GP (still nonparametric)

Table: Average learning success with non-parametric transition models

GP “Deterministic” GP
Learning success 94.52% 0%

Reasons for failure of deterministic model:
Model errors: Long-term predictions make absolutely no sense,
and the predicted states are nowhere near the target

No gradient signal
No automatic exploration (model and policy are deterministic)

Stochastic policy fixes this to some degree

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL) Controlling Mechanical Systems with Learned Models November 18, 2019 15
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No automatic exploration (model and policy are deterministic)

Stochastic policy fixes this to some degree

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Learning to Control an Off-the-Shelf Robot

Autonomously learn block-stacking with a low-cost robot
Kinect camera as only sensor
Robot very noisy
Learn forward model and controller from scratch
Small number of interactions: Robot wears out quickly

Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
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Wide Applicability

with D Fox with P Englert, A Paraschos, J Peters with A Kupcsik, J Peters, G Neumann

B Bischoff (Bosch), ESANN 2013 A McHutchon (U Cambridge) B Bischoff (Bosch), ECML 2013

Application to a wide range of robotic systems
Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching
Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics
Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Marc Deisenroth (UCL) Controlling Mechanical Systems with Learned Models November 18, 2019 17



Summary (1)

In robotics, data-efficient learning is critical
Probabilistic, model-based RL approach

Reduce model bias
Unprecedented learning speed
Wide applicability

Marc Deisenroth (UCL) Controlling Mechanical Systems with Learned Models November 18, 2019 18



Safe Exploration

Deal with real-world safety constraints (states/controls)
Use probabilistic model to predict whether state constraints are
violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
Adjust policy if necessary (during policy learning)

Safe exploration within an MPC-based RL setting
Optimize control signals ut directly (no policy parameters)
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Approach

Idea: Optimize control signals directly (instead of policy
parameters)
Few parameters to optimize Low-dimensional search space
Open-loop control

No chance of success (with minor model inaccuracies)

Model Predictive Control (MPC) turns this into a closed-loop
control approach
Positive side-effect: Increase robustness to model errors (online
approach) Increase data efficiency
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Model Predictive Control

start

robot

destination

Given a state xt, plan (open loop) over a short horizon of length
H to get an open-loop control sequence u˚t`0, . . . ,u

˚
t`H´1

After transitioning into a new state xt`1, re-plan (as previously):
Get u˚t`1`0, . . . ,u

˚
t`1`H´1 closed-loop/feedback control
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Given a state xt, plan (open loop) over a short horizon of length
H to get an open-loop control sequence u˚t`0, . . . ,u

˚
t`H´1

After transitioning into a new state xt`1, re-plan (as previously):
Get u˚t`1`0, . . . ,u

˚
t`1`H´1 closed-loop/feedback control

Use this within a trial-and-error RL setting
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Probabilistic MPC in RL

Learned GP model for transition dynamics
Repeat (while executing the policy):

1 In current state xt, determine optimal control sequence
u˚
0 , . . . ,u

˚
H´1

2 Apply first control u˚
0 in state xt

3 Transition to next state xt`1

4 Update GP transition model

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Theoretical Results

Uncertainty propagation is deterministic (GP moment
matching)

Re-formulate system dynamics:

zt`1 “ fMM pzt,utq

zt “ tµt,Σtu Collects moments

Deterministic system function that propagates moments
Lipschitz continuity (under mild assumptions) implies that we
can apply Pontryagin’s Minimum Principle

Control Hamiltonian Hpλt`1, zt,utq

Adjoint recursion for λt

Necessary optimality condition: BH{But “ 0

Principled treatment of constraints on controls
Use predictive uncertainty to check violation of state constraints

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Learning Speed (Cart Pole)
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Zero-Var: Only use the mean of the GP, discard variances for
long-term predictions
MPC: Increased data efficiency (40% less experience required
than PILCO)

MPC more robust to model inaccuracies than a parametrized
feedback controller

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Learning Speed (Double Pendulum)
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GP-MPC maintains the same improvement in data efficiency
Zero-Var fails:

Gets stuck in local optimum near start state
Insufficient exploration due to lack of uncertainty propagation

Although MPC is fairly robust to model inaccuracies we cannot
get away without uncertainty propagation

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Safety Constraints (Cart Pole)

u

Trial # (3 sec or less per trial)
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%

PILCO
GP-MPC-Var
GP-MPC-Mean

PILCO 16/100 constraint violations
GP-MPC-Mean 21/100 constraint violations
GP-MPC-Var 3/100 constraint violations

Propagating model uncertainty important for safety

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Safety Constraints (Double Pendulum)

u1

u2 Trial # (3 sec or less per trial)
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%

PILCO
GP-MPC-Var
GP-MPC-Mean

Experiment Double Pendulum
PILCO 23/100

GP-MPC-Mean 26/100
GP-MPC-Var 11/100

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Summary (2)

u

Probabilistic prediction models for safe exploration
Uncertainty propagation can be used to reduce violation of
safety constraints
MPC framework increases robustness to model errors

Increased data efficiency
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Team and Collaborators
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Wrap-up

In robotics, data-efficient learning is critical
Controller learning based on learned probabilistic models

Reinforcement learning
Safe exploration and MPC

Key to success: Probabilistic modeling and Bayesian inference

ああありりりがががとととうううごごござざざいいいままましししたたた
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GP Moment Matching: Some Details

f „ GP p0, kq , Training data: X,y

x˚ „ N
`

µ, Σ
˘

Compute Erfpx˚qs

Ef,x˚
rfpx˚qs “ Ex

“

Ef rfpx˚q|x˚s
‰

“ Ex˚rmf px˚q s

“ Ex˚

“

kpx˚,XqpK ` σ2nIq
´1y

‰

“ βJ
ż

kpX,x˚qN
`

x˚ |µ, Σ
˘

dx˚

β :“ pK ` σ2nIq
´1y independent of x˚

If k is a Gaussian (squared exponential) kernel, this integral can
be solved analytically
Variance of fpx˚q can be computed similarly
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