

A Machine Learning Approach to Optimal Control

Marc Deisenroth

Centre for Artificial Intelligence Department of Computer Science University College London

Tokyo Institute of Technology November 26, 2019 m.deisenroth@ucl.ac.uk

 Vision: Autonomous robots support humans in everyday activities
 Fast learning and automatic adaptation

- Vision: Autonomous robots support humans in everyday activities → Fast learning and automatic adaptation
- Currently: Data-hungry learning or human guidance

- Vision: Autonomous robots support humans in everyday activities → Fast learning and automatic adaptation
- Currently: Data-hungry learning or human guidance

Fully **autonomous learning and decision making with little data** in real-life situations

Data-Efficient Reinforcement Learning

Ability to learn and make decisions in complex domains without requiring large quantities of data

Data-Efficient RL for Autonomous Robots

1 Model-based RL

▶ Data-efficient decision making

2 Model predictive RL

Speed up learning further by online planning

3 Incorporation of structural prior knowledge

Exploit physical and geometric properties to constrain the learning problem

AUC

Reinforcement Learning

observation

- Learn to solve a task
- Trial-and-error interaction with the environment
- Feedback via reward/cost function

Reinforcement Learning and Optimal Control

Reinforcement Learning and Optimal Control

Objective (Controller Learning)

Find policy parameters θ^* that minimize the expected long-term cost

$$J(oldsymbol{ heta}) = \sum_{t=1}^T \mathbb{E}[c(oldsymbol{x}_t)|oldsymbol{ heta}], \qquad p(oldsymbol{x}_0) = \mathcal{N}ig(oldsymbol{\mu}_0,\,oldsymbol{\Sigma}_0ig)\,.$$

Instantaneous cost $c(\boldsymbol{x}_t)$, e.g., $\|\boldsymbol{x}_t - \boldsymbol{x}_{target}\|^2$

➤ Typical objective in optimal control and reinforcement learning (Bertsekas, 2005; Sutton & Barto, 1998)

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\theta]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f

System identification

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

^

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function *f*
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- Probabilistic model for transition function *f* System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller

AUC

Predictions? Decision Making? Model Errors!

UC

Express uncertainty about the underlying function to be robust to model errors

➤ Gaussian process for model learning (Rasmussen & Williams, 2006)

Marc Deisenroth (UCL)

Introduction to Gaussian Processes

- Flexible Bayesian regression method
- Probability distribution over functions
- Fully specified by
 - Mean function *m* (average function)
 - Covariance function k (assumptions on structure)

 $k(\boldsymbol{x}_p, \boldsymbol{x}_q) = \operatorname{Cov}[f(\boldsymbol{x}_p), f(\boldsymbol{x}_q)]$

Introduction to Gaussian Processes

- Flexible Bayesian regression method
- Probability distribution over functions
- Fully specified by
 - Mean function *m* (average function)
 - Covariance function *k* (assumptions on structure)

 $k(\boldsymbol{x}_p, \boldsymbol{x}_q) = \operatorname{Cov}[f(\boldsymbol{x}_p), f(\boldsymbol{x}_q)]$

 Posterior predictive distribution at x_{*} is Gaussian (Bayes' theorem):

$$p(f(\boldsymbol{x}_*)|\boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \mathcal{N}(f(\boldsymbol{x}_*) | m(\boldsymbol{x}_*), \sigma^2(\boldsymbol{x}_*))$$

Test input Training data

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\boldsymbol{x}_*)|\boldsymbol{x}_*, \varnothing] &= m(\boldsymbol{x}_*) = 0\\ \mathbb{V}[f(\boldsymbol{x}_*)|\boldsymbol{x}_*, \varnothing] &= \sigma^2(\boldsymbol{x}_*) = k(\boldsymbol{x}_*, \boldsymbol{x}_*) \end{split}$$

AUC

Prior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\boldsymbol{x}_*)|\boldsymbol{x}_*, \varnothing] &= m(\boldsymbol{x}_*) = 0\\ \mathbb{V}[f(\boldsymbol{x}_*)|\boldsymbol{x}_*, \varnothing] &= \sigma^2(\boldsymbol{x}_*) = k(\boldsymbol{x}_*, \boldsymbol{x}_*) \end{split}$$

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

UCI

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

UCI

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

Posterior belief about the function

Predictive (marginal) mean and variance:

$$\begin{split} \mathbb{E}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= m(\bm{x}_*) = k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} \bm{y} \\ \mathbb{V}[f(\bm{x}_*)|\bm{x}_*,\bm{X},\bm{y}] &= \sigma^2(\bm{x}_*) = k(\bm{x}_*,\bm{x}_*) - k(\bm{X},\bm{x}_*)^\top k(\bm{X},\bm{X})^{-1} k(\bm{X},\bm{x}_*) \end{split}$$

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

^

Long-Term Predictions

• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

Long-Term Predictions

• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

$$\underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}$$

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

Long-Term Predictions

• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

$$p(\boldsymbol{x}_{t+1}|\boldsymbol{\theta}) = \iiint \underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} df \, d\boldsymbol{x}_t \, d\boldsymbol{u}_t$$

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

UCL

Long-Term Predictions

• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

$$p(\boldsymbol{x}_{t+1}|\boldsymbol{\theta}) = \iiint \underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} df \, d\boldsymbol{x}_t \, d\boldsymbol{u}_t$$

➤ GP moment matching (Girard et al., 2002; Quiñonero-Candela et al., 2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

AUC

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- **3** Policy improvement
 - Compute expected long-term cost $J(\theta)$
 - Find parameters $\boldsymbol{\theta}$ that minimize $J(\boldsymbol{\theta})$
- 4 Apply controller

Policy Improvement

UCL

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

• Know how to predict $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

Policy Improvement

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

- Know how to predict $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- Compute

$$\mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}] = \int c(\boldsymbol{x}_t) \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) d\boldsymbol{x}_t, \quad t = 1, \dots, T,$$

and sum them up to obtain $J(\boldsymbol{\theta})$

Policy Improvement

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

- Know how to predict $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- Compute

$$\mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}] = \int c(\boldsymbol{x}_t) \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) d\boldsymbol{x}_t, \quad t = 1, \dots, T,$$

and sum them up to obtain $J(\boldsymbol{\theta})$

- Analytically compute gradient $dJ(\theta)/d\theta$
- Standard gradient-based optimizer (e.g., BFGS) to find θ^*

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller

Standard Benchmark: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart
- No knowledge about nonlinear dynamics → Learn from scratch
- Cost function $c(\boldsymbol{x}) = 1 \exp(-\|\boldsymbol{x} \boldsymbol{x}_{\text{target}}\|^2)$

■ Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

Standard Benchmark: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart
- No knowledge about nonlinear dynamics → Learn from scratch
- Cost function $c(\boldsymbol{x}) = 1 \exp(-\|\boldsymbol{x} \boldsymbol{x}_{\text{target}}\|^2)$

■ Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

Standard Benchmark: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart
- No knowledge about nonlinear dynamics → Learn from scratch
- Cost function $c(\boldsymbol{x}) = 1 \exp(-\|\boldsymbol{x} \boldsymbol{x}_{\text{target}}\|^2)$
- Unprecedented learning speed compared to state-of-the-art
- Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Wide Applicability

UCL

with P Englert, A Paraschos, J Peters

with D Fox

B Bischoff (Bosch), ESANN 2013

A McHutchon (U Cambridge)

B Bischoff (Bosch), ECML 2013

➤ Application to a wide range of robotic systems

Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Marc Deisenroth (UCL)

- In robotics, data-efficient learning is critical
- Probabilistic, model-based RL approach
 - Reduce model bias
 - Unprecedented learning speed
 - Wide applicability

Sanket Kamthe

Marc Deisenroth (UCL)

Safe Exploration

- Deal with real-world safety constraints (states/controls)
- Use probabilistic model to predict whether state constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
- Adjust policy if necessary (during policy learning)

Safe Exploration

- Deal with real-world safety constraints (states/controls)
- Use probabilistic model to predict whether state constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
- Adjust policy if necessary (during policy learning)
- Safe exploration within an MPC-based RL setting
- \blacktriangleright Optimize control signals u_t directly (no policy parameters)

- Idea: Optimize control signals directly (instead of policy parameters)
- Few parameters to optimize ▶ Low-dimensional search space
- Open-loop control
 No chance of success (with minor model inaccuracies)

- Idea: Optimize control signals directly (instead of policy parameters)
- Few parameters to optimize ► Low-dimensional search space
- Open-loop control
 No chance of success (with minor model inaccuracies)
- Model predictive control (MPC) turns this into a closed-loop control approach

- Idea: Optimize control signals directly (instead of policy parameters)
- Few parameters to optimize ► Low-dimensional search space
- Open-loop control
 No chance of success (with minor model inaccuracies)
- Model predictive control (MPC) turns this into a closed-loop control approach
- Use this within a trial-and-error RL setting

Learned GP model for transition dynamics

- Repeat (while executing the policy):
 - In current state x_t , determine optimal control sequence u_0^*, \ldots, u_{H-1}^*
 - 2 Apply first control u_0^* in state x_t
 - 3 Transition to next state x_{t+1}
 - 4 Update GP transition model

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Theoretical Results

Uncertainty propagation is deterministic (GP moment matching)

▶ Re-formulate system dynamics:

$$z_{t+1} = f_{MM}(z_t, u_t)$$

$$z_t = \{\mu_t, \Sigma_t\} \implies \text{Collects moments}$$

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Theoretical Results

Uncertainty propagation is deterministic (GP moment matching)

▶ Re-formulate system dynamics:

 $\boldsymbol{z}_{t+1} = f_{MM}(\boldsymbol{z}_t, \boldsymbol{u}_t) \\ \boldsymbol{z}_t = \{\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t\} \quad \blacktriangleright \text{ Collects moments}$

- Deterministic system function that propagates moments
- Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle
 - Control Hamiltonian $H(\lambda_{t+1}, \boldsymbol{z}_t, \boldsymbol{u}_t)$
 - Adjoint recursion for λ_t
 - Necessary optimality condition: $\partial H/\partial u_t = \mathbf{0}$
 - ▶ Principled treatment of constraints on controls

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Theoretical Results

Uncertainty propagation is deterministic (GP moment matching)

▶ Re-formulate system dynamics:

 $z_{t+1} = f_{MM}(z_t, u_t)$ $z_t = \{\mu_t, \Sigma_t\} \implies \text{Collects moments}$

- Deterministic system function that propagates moments
- Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle
 - Control Hamiltonian $H(\boldsymbol{\lambda}_{t+1}, \boldsymbol{z}_t, \boldsymbol{u}_t)$
 - Adjoint recursion for λ_t
 - Necessary optimality condition: $\partial H / \partial u_t = \mathbf{0}$
 - Principled treatment of constraints on controls
- Use predictive uncertainty to check violation of state constraints

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Learning Speed (Cart Pole)

 Zero-Var: Only use the mean of the GP, discard variances for long-term predictions

MPC: Increased data efficiency (40% less experience required than PILCO)
 MPC more robust to model inaccuracies than a parametrized feedback controller

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Marc Deisenroth (UCL)

Learning Speed (Double Pendulum)

- GP-MPC maintains the same improvement in data efficiency
- Zero-Var fails:
 - Gets stuck in local optimum near start state
 - Insufficient exploration due to lack of uncertainty propagation

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

Learning Speed (Double Pendulum)

- GP-MPC maintains the same improvement in data efficiency
- Zero-Var fails:
 - Gets stuck in local optimum near start state
 - Insufficient exploration due to lack of uncertainty propagation
- Although MPC is fairly robust to model inaccuracies we cannot get away without uncertainty propagation

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Marc Deisenroth (UCL)

Safety Constraints (Cart Pole)

PILCO	16/100	constraint violations
GP-MPC-Mean	21/100	constraint violations
GP-MPC-Var	3/100	constraint violations

Propagating model uncertainty important for safety

%

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Marc Deisenroth (UCL)

Safety Constraints (Double Pendulum)

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Marc Deisenroth (UCL)

- Probabilistic prediction models for safe exploration
- Uncertainty propagation can be used to reduce violation of safety constraints
- MPC framework increases robustness to model errors
 Increased data efficiency

Steindór Sæmundsson

Alexander Terenin

Katja Hofmann

Structural Priors

High-level prior knowledge: e.g., laws of physics or configuration constraints

▶ Improve data efficiency and generalization

Variational Integrator Networks (VINs)

Network architectures with built-in physics and geometric structure

Outline:

- How we talk about physics
- How we think about neural networks
- How to encode physics and geometry into architecture

Physics: Lagrangian/Hamiltonian Mechanics

- General framework: classical mechanics, quantum mechanics, relativity
- Global properties: conservation laws, configuration manifold, etc.
- Solve differential equations

Physics: Key Objects

■ Configuration space:

 $q\in \mathcal{Q}$

Physics: Key Objects

■ Configuration space:

$$q\in \mathcal{Q}$$

■ Lagrangian (specifies physics):

 $L(q(t), \dot{q}(t)) = K - U =$ kinetic energy – potential energy

Physics: Key Objects

Configuration space:

$$q\in \mathcal{Q}$$

■ Lagrangian (specifies physics):

 $L(q(t), \dot{q}(t)) = K - U =$ kinetic energy – potential energy

Action (maps trajectories to real numbers)

$$A = \int_{a}^{b} L(q(t), \dot{q}(t)) dt$$

Physics: Hamilton's Principle

UCL

Hamilton's Principle

Physical paths are stationary points of the action.

¹UCL

Hamilton's Principle

Physical paths are stationary points of the action.

Equations of motion (Euler-Lagrange equation):

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$

<u></u>

Hamilton's Principle

Physical paths are stationary points of the action.

Equations of motion (Euler-Lagrange equation):

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$

The solution q(t) evolves according to the laws of physics.

UCL

- Lagrangian \rightarrow Specifies the physics
- Hamilton's principle → Equations of motion
- Solution \rightarrow Physical path

Neural ODE Perspective

■ Residual networks = Learnable approximate ODE solvers

 $\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), t, \theta) \quad \longleftrightarrow \quad \boldsymbol{x}_{t+1} = \boldsymbol{x}_t + f(\boldsymbol{x}(t), \theta)$

Neural ODE Perspective

■ Residual networks = Learnable approximate ODE solvers

 $\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), t, \theta) \quad \longleftrightarrow \quad \boldsymbol{x}_{t+1} = \boldsymbol{x}_t + f(\boldsymbol{x}(t), \theta)$

Intuition: Physical networks = Learnable approximations to equations of motion

 $\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), t, \theta) \quad \longleftrightarrow \quad \boldsymbol{x}_{t+1} = \boldsymbol{x}_t + f(\boldsymbol{x}(t), \theta)$

- Intuition: Physical networks = Learnable approximations to equations of motion
- Problem: Euler discretization leads to significant errors and physically implausible behavior

UCL

Variational Integrators

Geometric integrators that preserve global (physical) properties

UCL

Variational Integrators

Geometric integrators that preserve global (physical) properties

Properties:

- Symplectic (volume preserving)
- Momentum preserving
- Bounded energy behavior

Recipe for Variational Integrator Network

1 Write down parameterized Lagrangian:

 $L_{\theta}(q(t), \dot{q}(t))$

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

UCL

Recipe for Variational Integrator Network

1 Write down parameterized Lagrangian:

 $L_{\theta}(q(t), \dot{q}(t))$

2 Derive **explicit** variational integrator:

Lagrangian: $q_{t+1} = f_{\theta}(q_t, q_{t-1})$ Hamiltonian: $[q_{t+1}, \dot{q}_{t+1}] = f_{\theta}(q_t, \dot{q}_t)$

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

AUC

Recipe for Variational Integrator Network

1 Write down parameterized Lagrangian:

 $L_{\theta}(q(t), \dot{q}(t))$

2 Derive **explicit** variational integrator:

Lagrangian: $q_{t+1} = f_{\theta}(q_t, q_{t-1})$ Hamiltonian: $[q_{t+1}, \dot{q}_{t+1}] = f_{\theta}(q_t, \dot{q}_t)$

3 f_{θ} defines the network architecture

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

A Machine Learning Approach to Optimal Control

UC

VIN Examples

Newtonian Potential System:

$$L_{\theta}(q(t), \dot{q}(t)) = K_{\theta}(\dot{q}(t)) - U_{\theta}(q(t))$$

• Newtonian network on \mathbb{R}^D

$$q_{t+1} = 2q_t - q_{t-1} - h^2 f_\theta(q_t)$$

VIN Examples

Newtonian Potential System:

$$L_{\theta}(q(t), \dot{q}(t)) = K_{\theta}(\dot{q}(t)) - U_{\theta}(q(t))$$

• Newtonian network on \mathbb{R}^D

$$q_{t+1} = 2q_t - q_{t-1} - h^2 f_\theta(q_t)$$

• Newtonian network on SO(2)

$$\sin \Delta q_t = \sin \Delta q_{t-1} + h^2 r_\theta(q_t)$$
$$q_{t+1} = q_t + \Delta q_t$$

▶ Allows us to define dynamics on a manifold

Pendulum System. Left: 150 observations; Right: 750 observations.

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

UCL

Pendulum System. Left: 150 observations; Right: 750 observations.

 Baseline neural network: Dissipates/adds energy for low and moderate data

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

UC

Pendulum System. Left: 150 observations; Right: 750 observations.

- Baseline neural network: Dissipates/adds energy for low and moderate data
- Hamiltonian neural network (Greydanus et al., 2019): Overfits in low-data regime

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

UC

Pendulum System. Left: 150 observations; Right: 750 observations.

- Baseline neural network: Dissipates/adds energy for low and moderate data
- Hamiltonian neural network (Greydanus et al., 2019): Overfits in low-data regime
- Variational integrator network: Conserves energy and generalizes better in both regimes

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

Learning from Pixel Data

■ VIN within variational auto-encoder (VAE) setup:

- Learn physical system in lower-dimensional latent space
- Use VIN for long-term forecasting

Exploit geometry of the problem for system identification and forecasting

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Learning from Pixel Data: Forecasting

Residual (Euler) Network

Observations: 28 × 28 pixel images of pendulum
Training data: 40 images

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

- Observations: 28 × 28 pixel images of pendulum
- Training data: 40 images
- Dynamic VAE: Forecasting is not meaningful

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL)

A Machine Learning Approach to Optimal Control

- Observations: 28 × 28 pixel images of pendulum
- Training data: 40 images
- Dynamic VAE: Forecasting is not meaningful
- DLG-VAE: Physically meaningful long-term forecasts in latent and observation space

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Learning from Pixel Data: Latent Embeddings

Sæmundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

A Machine Learning Approach to Optimal Control

- Variational integrator networks to encode physics and geometric structure >> Interpretability
- Data-efficient learning and physically meaningful long-term forecasts

Team and Collaborators

UCL

A Machine Learning Approach to Optimal Control

- **Data efficiency** is a practical challenge for autonomous robots
- Three pillars of data-efficient machine learning
 - Model-based reinforcement learning with learned probabilistic models for fast learning from scratch
 - 2 Model predictive RL for safe exploration and more robust models
 - 3 Incorporation of structural priors for learning physically meaningful predictive models

- **Data efficiency** is a practical challenge for autonomous robots
- Three pillars of data-efficient machine learning
 - Model-based reinforcement learning with learned probabilistic models for fast learning from scratch
 - 2 Model predictive RL for safe exploration and more robust models
 - 3 Incorporation of structural priors for learning physically meaningful predictive models

ありがとうございました

References I

- ¹UCL
- F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. Safe Model-based Reinforcement Learning with Stability Guarantees. In Advances in Neural Information Processing Systems, 2017.
- [2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2005.
- [3] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2007.
- [4] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll. Learning Throttle Valve Control Using Policy Search. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, 2013.
- [5] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox. Multi-Task Policy Search for Robotics. In Proceedings of the IEEE International Conference on Robotics and Automation, 2014.
- [6] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics and Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423, 2015.
- [7] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In Proceedings of the International Conference on Machine Learning, 2011.
- [8] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning. In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.
- [9] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Model-based Imitation Learning by Probabilistic Trajectory Matching. In Proceedings of the IEEE International Conference on Robotics and Automation, 2013.
- [10] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Probabilistic Model-based Imitation Learning. Adaptive Behavior, 21:388–403, 2013.
- [11] A. Girard, C. E. Rasmussen, and R. Murray-Smith. Gaussian Process Priors with Uncertain Inputs: Multiple-Step Ahead Prediction. Technical Report TR-2002-119, University of Glasgow, 2002.
- [12] S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian Neural Networks. In Advances in Neural Information Processing Systems, 2019.

References II

- **UCL**
- [13] D. Jimenez Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation and Variational Inference in Deep Latent Gaussian Models. In Proceedings of the International Conference on Machine Learning, 2014.
- [14] S. Kamthe and M. P. Deisenroth. Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2018.
- [15] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proceedings of the International Conference on Learning Representations, 2014.
- [16] A. Kupcsik, M. P. Deisenroth, J. Peters, L. A. Poha, P. Vadakkepata, and G. Neumann. Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills. *Artificial Intelligence*, 2017.
- [17] T. X. Nghiem and C. N. Jones. Data-driven Demand Response Modeling and Control of Buildings with Gaussian Processes. In Proceedings of the American Control Conference, 2017.
- [18] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—Application to Multiple-Step Ahead Forecasting. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, volume 2, pages 701–704, Apr. 2003.
- [19] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA, USA, 2006.
- [20] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause. Safe Exploration for Optimization with Gaussian Processes. In Proceedings of the International Conference on Machine Learning, 2015.
- [21] S. Sæmundsson, A. Terenin, K. Hofmann, and M. P. Deisenroth. Variational Integrator Networks for Physically Meaningful Embeddings. In arXiv:1910.09349, 2019.

$f \sim GP(0,k)$, Training data: $oldsymbol{X},oldsymbol{y}$ $oldsymbol{x}_* \sim \mathcal{N}ig(oldsymbol{\mu},oldsymbol{\Sigma}ig)$

• Compute $\mathbb{E}[f(\boldsymbol{x}_*)]$

$$\begin{split} & f \sim GP(0,k)\,, \quad \text{Training data: } \boldsymbol{X}, \boldsymbol{y} \\ & \boldsymbol{x}_* \sim \mathcal{N} \big(\boldsymbol{\mu},\, \boldsymbol{\Sigma} \big) \end{split}$$

• Compute $\mathbb{E}[f(\boldsymbol{x}_*)]$

$$\mathbb{E}_{f,\boldsymbol{x}_{\ast}}[f(\boldsymbol{x}_{\ast})] = \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}[f(\boldsymbol{x}_{\ast})|\boldsymbol{x}_{\ast}]\right] = \mathbb{E}_{\boldsymbol{x}_{\ast}}\left[\frac{m_{f}(\boldsymbol{x}_{\ast})}{m_{f}(\boldsymbol{x}_{\ast})}\right]$$

AUC

 $f \sim GP(0,k)$, Training data: $\boldsymbol{X}, \boldsymbol{y}$ $\boldsymbol{x}_* \sim \mathcal{N} (\boldsymbol{\mu}, \boldsymbol{\Sigma})$

• Compute $\mathbb{E}[f(\boldsymbol{x}_*)]$

$$\mathbb{E}_{f,\boldsymbol{x}_{\ast}}[f(\boldsymbol{x}_{\ast})] = \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}[f(\boldsymbol{x}_{\ast})|\boldsymbol{x}_{\ast}]\right] = \mathbb{E}_{\boldsymbol{x}_{\ast}}\left[\frac{m_{f}(\boldsymbol{x}_{\ast})}{k(\boldsymbol{x}_{\ast},\boldsymbol{X})(\boldsymbol{K}+\sigma_{n}^{2}\boldsymbol{I})^{-1}\boldsymbol{y}}\right]$$

AUC

 $f \sim GP(0,k)$, Training data: $\boldsymbol{X}, \boldsymbol{y}$ $\boldsymbol{x}_* \sim \mathcal{N} (\boldsymbol{\mu}, \boldsymbol{\Sigma})$

• Compute $\mathbb{E}[f(\boldsymbol{x}_*)]$

$$\mathbb{E}_{f,\boldsymbol{x}_{*}}[f(\boldsymbol{x}_{*})] = \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}[f(\boldsymbol{x}_{*})|\boldsymbol{x}_{*}]\right] = \mathbb{E}_{\boldsymbol{x}_{*}}\left[m_{f}(\boldsymbol{x}_{*})\right]$$
$$= \mathbb{E}_{\boldsymbol{x}_{*}}\left[k(\boldsymbol{x}_{*},\boldsymbol{X})(\boldsymbol{K}+\sigma_{n}^{2}\boldsymbol{I})^{-1}\boldsymbol{y}\right]$$
$$= \boldsymbol{\beta}^{\top}\int k(\boldsymbol{X},\boldsymbol{x}_{*})\mathcal{N}(\boldsymbol{x}_{*} \mid \boldsymbol{\mu},\boldsymbol{\Sigma})d\boldsymbol{x}_{*}$$
$$\boldsymbol{\beta} := (\boldsymbol{K}+\sigma_{n}^{2}\boldsymbol{I})^{-1}\boldsymbol{y} \quad \blacktriangleright \text{ independent of } \boldsymbol{x}_{*}$$

$$\begin{split} & f \sim GP(0,k)\,, \quad \text{Training data: } \boldsymbol{X}, \boldsymbol{y} \\ & \boldsymbol{x}_* \sim \mathcal{N} \big(\boldsymbol{\mu},\, \boldsymbol{\Sigma} \big) \end{split}$$

• Compute $\mathbb{E}[f(\boldsymbol{x}_*)]$

 $\mathbb{E}_{f,\boldsymbol{x}_*}[f(\boldsymbol{x}_*)] = \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_f[f(\boldsymbol{x}_*)|\boldsymbol{x}_*]\right] = \mathbb{E}_{\boldsymbol{x}_*}\left[m_f(\boldsymbol{x}_*)\right]$ $= \mathbb{E}_{\boldsymbol{x}_*}\left[k(\boldsymbol{x}_*,\boldsymbol{X})(\boldsymbol{K}+\sigma_n^2\boldsymbol{I})^{-1}\boldsymbol{y}\right]$ $= \boldsymbol{\beta}^\top \int k(\boldsymbol{X},\boldsymbol{x}_*)\mathcal{N}\left(\boldsymbol{x}_* \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)d\boldsymbol{x}_*$ $\boldsymbol{\beta} := (\boldsymbol{K}+\sigma_n^2\boldsymbol{I})^{-1}\boldsymbol{y} \implies \text{independent of } \boldsymbol{x}_*$

- If *k* is a Gaussian (squared exponential) kernel, this integral can be solved analytically
- Variance of $f(\boldsymbol{x}_*)$ can be computed similarly

Marc Deisenroth (UCL)