Lecture 16: Sampling

Recommended reading:

Bishop: Chapter 11, MacKay: Chapter 29

Iain Murray's MCMC Tutorial: http://tinyurl.com/jcz4qzk

Duncan Gillies and Marc Deisenroth

Department of Computing Imperial College London

February 22-24, 2016

Monte Carlo Methods—Motivation

- Monte Carlo methods are computational techniques that make use of random numbers
- Two typical problems:
 - 1. Problem 1: Generate samples $\{x^{(s)}\}$ from a given probability distribution p(x)

Monte Carlo Methods—Motivation

- Monte Carlo methods are computational techniques that make use of random numbers
- Two typical problems:
 - 1. Problem 1: Generate samples $\{x^{(s)}\}$ from a given probability distribution p(x)
 - 2. Problem 2: Estimate expectations of functions under that distribution:

$$\mathbb{E}[f(x)] = \int f(x)p(x)dx$$

Monte Carlo Methods—Motivation

- Monte Carlo methods are computational techniques that make use of random numbers
- Two typical problems:
 - 1. Problem 1: Generate samples $\{x^{(s)}\}$ from a given probability distribution p(x)
 - 2. Problem 2: Estimate expectations of functions under that distribution:

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

➤ Example: Means/variances of distributions, marginal likelihood

Complication: Integral cannot be evaluated analytically

Monte Carlo Estimation

Statistical sampling can be applied to compute expectations

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

Monte Carlo Estimation

Statistical sampling can be applied to compute expectations

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

• Example: Making predictions (e.g., Bayesian linear regression with a training set $\mathcal{D} = \{X, y\}$ at test input x_*)

$$\begin{split} p(\boldsymbol{y}_*|\boldsymbol{x}_*,\mathcal{D}) &= \int p(\boldsymbol{y}_*|\boldsymbol{\theta},\boldsymbol{x}_*)p(\boldsymbol{\theta}|\mathcal{D})d\boldsymbol{\theta} \\ &\approx \frac{1}{S}\sum_{s=1}^S p(\boldsymbol{y}_*|\boldsymbol{\theta}^{(s)},\boldsymbol{x}_*), \quad \boldsymbol{\theta}^{(s)} \sim p(\boldsymbol{\theta}|\mathcal{D}) \end{split}$$

Monte Carlo Estimation

Statistical sampling can be applied to compute expectations

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

• Example: Making predictions (e.g., Bayesian linear regression with a training set $\mathcal{D} = \{X, y\}$ at test input x_*)

$$\begin{split} p(\boldsymbol{y}_*|\boldsymbol{x}_*,\mathcal{D}) &= \int p(\boldsymbol{y}_*|\boldsymbol{\theta},\boldsymbol{x}_*)p(\boldsymbol{\theta}|\mathcal{D})d\boldsymbol{\theta} \\ &\approx \frac{1}{S}\sum_{s=1}^S p(\boldsymbol{y}_*|\boldsymbol{\theta}^{(s)},\boldsymbol{x}_*), \quad \boldsymbol{\theta}^{(s)} \sim p(\boldsymbol{\theta}|\mathcal{D}) \end{split}$$

• If we can sample from p(x) (or $p(\theta)$) we can approximate these integrals

Properties of Monte Carlo Sampling

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

- Estimator is unbiased
- Variance shrinks $\propto 1/S$, regardless of the dimensionality of x

Alternatives to Monte Carlo

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

To evaluate these expectations we can use other methods than Monte Carlo:

- Numerical integration (low-dimensional problems)
- Deterministic approximations, e.g., Variational Bayes, Expectation Propagation

Back to Monte Carlo Estimation

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

- How do we get these samples?
- ▶ Need to solve Problem 1
 - Sampling from simple distributions
 - Sampling from complicated distributions

Important Example

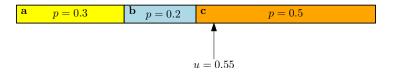
- By specifying the model, we know the prior $p(\theta)$ and the likelihood $p(\mathcal{D}|\theta)$
- The unnormalized posterior is

$$p(\boldsymbol{\theta}|\mathcal{D}) \propto p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$$

and there is often no hope to compute the normalization constant

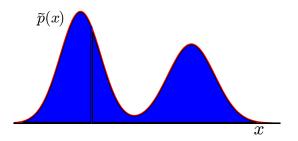
 Samples are a good way to characterize this posterior (important for model comparison, Bayesian predictions, ...)

Sampling Discrete Values



- $u \sim \mathcal{U}[0,1]$, where \mathcal{U} is the uniform distribution
- $u = 0.55 \Rightarrow x = c$

Continuous Variables

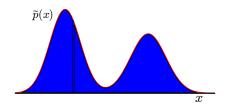


More complicated. Geometrically, sample uniformly from the area under the curve

Rejection Sampling

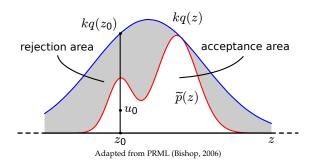
10

Rejection Sampling: Setting

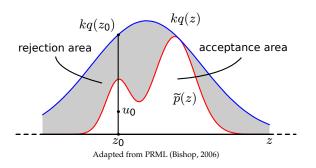


- Assume sampling from p(z) is difficult
- Evaluating $\tilde{p}(z) = Zp(z)$ is easy (and Z may be unknown)
- Find a simpler distribution (proposal distribution) q(z) from which we can easily draw samples (e.g., Gaussian)
- Find an upper bound $kq(z) \geqslant \tilde{p}(z)$

Algorithm

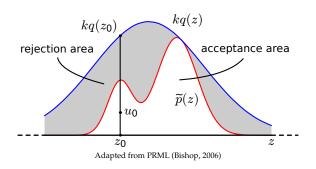


- 1. Generate $z_0 \sim q(z)$
- 2. Generate $u_0 \sim \mathcal{U}[0, kq(z_0)]$
- 3. If $u_0 > \tilde{p}(z_0)$, reject the sample. Otherwise, retain z_0



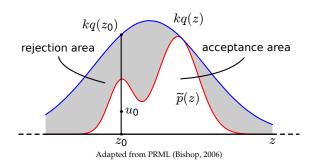
- Accepted pairs (z, u) are uniformly distributed under the curve of $\tilde{p}(z)$
- Probability density of the z-coordinates of accepted points must be proportional to $\tilde{p}(z)$
- Samples are independent samples from p(z)

Shortcomings



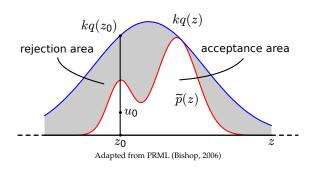
► Finding *k* is tricky

Shortcomings



- ► Finding *k* is tricky
- ► In high dimensions the factor *k* is probably huge

Shortcomings



- ▶ Finding *k* is tricky
- ► In high dimensions the factor *k* is probably huge
- Low acceptance rate

15

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution *q* (proposal distribution):

$$\mathbb{E}_p[f(x)] = \int f(x)p(x)dx$$

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution q (proposal distribution):

$$\mathbb{E}_{p}[f(x)] = \int f(x)p(x)dx$$
$$= \int f(x)p(x)\frac{q(x)}{q(x)}dx$$

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution q (proposal distribution):

$$\mathbb{E}_{p}[f(x)] = \int f(x)p(x)dx$$

$$= \int f(x)p(x)\frac{q(x)}{q(x)}dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution q (proposal distribution):

$$\mathbb{E}_{p}[f(x)] = \int f(x)p(x)dx$$

$$= \int f(x)p(x)\frac{q(x)}{q(x)}dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$= \mathbb{E}_{q}\left[f(x)\frac{p(x)}{q(x)}\right]$$

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution q (proposal distribution):

$$\mathbb{E}_{p}[f(x)] = \int f(x)p(x)dx$$

$$= \int f(x)p(x)\frac{q(x)}{q(x)}dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$= \mathbb{E}_{q}\left[f(x)\frac{p(x)}{q(x)}\right]$$

If we choose q in a way that we can easily sample from it, we can approximate this last expectation by Monte Carlo:

$$E_q\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right] \approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}) \frac{p(\mathbf{x}^{(s)})}{q(\mathbf{x}^{(s)})} \qquad , \quad \mathbf{x}^{(s)} \sim q(\mathbf{x})$$

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution q (proposal distribution):

$$\mathbb{E}_{p}[f(x)] = \int f(x)p(x)dx$$

$$= \int f(x)p(x)\frac{q(x)}{q(x)}dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$= \mathbb{E}_{q}\left[f(x)\frac{p(x)}{q(x)}\right]$$

If we choose q in a way that we can easily sample from it, we can approximate this last expectation by Monte Carlo:

$$E_q\left[f(x)\frac{p(x)}{q(x)}\right] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{p(x^{(s)})}{q(x^{(s)})} = \frac{1}{S} \sum_{s=1}^{S} w_s f(x^{(s)}), \quad x^{(s)} \sim q(x)$$

• Unbiased if q > 0 where p > 0 and if we can evaluate p

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 - ▶ Degeneracy (see also Particle Filtering (Thrun et al., 2005))

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 - ▶ Degeneracy (see also Particle Filtering (Thrun et al., 2005))
- Many draws from proposal density q required, especially in high dimensions

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 - ▶ Degeneracy (see also Particle Filtering (Thrun et al., 2005))
- Many draws from proposal density q required, especially in high dimensions
- Requires to be able to evaluate true p. Generalization exists for \tilde{p} . This generalization is biased (but consistent).

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 - ▶ Degeneracy (see also Particle Filtering (Thrun et al., 2005))
- Many draws from proposal density q required, especially in high dimensions
- Requires to be able to evaluate true p. Generalization exists for \tilde{p} . This generalization is biased (but consistent).
- Does not scale to interesting (high-dimensional) problems

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 - ▶ Degeneracy (see also Particle Filtering (Thrun et al., 2005))
- Many draws from proposal density q required, especially in high dimensions
- Requires to be able to evaluate true p. Generalization exists for \tilde{p} . This generalization is biased (but consistent).
- Does not scale to interesting (high-dimensional) problems
- ▶ Different approach to sample from complicated (high-dimensional) distributions

Markov Chains

18

Objective

Generate samples from an unknown target distribution.

Sampling IDAPI, Lecture 16 February 22–24, 2016

19

Markov Chains

Key idea: Instead of independent samples, use a proposal density q that depends on the state $x^{(t)}$

Markov Chains

Key idea: Instead of independent samples, use a proposal density q that depends on the state $x^{(t)}$

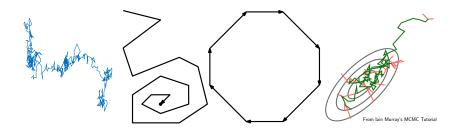
- Markov property: $p(x^{(t+1)}|x^{(1)},...,x^{(t)}) = T(x^{(t+1)}|x^{(t)})$ only depends on the previous setting/state of the chain
- ► *T* is called a **transition operator**
- Example: $T(x^{(t+1)}|x^{(t)}) = \mathcal{N}(x^{(t+1)}|x^{(t)}, \sigma^2 I)$

Sampling IDAPI, Lecture 16 February 22–24, 2016

Markov Chains

Key idea: Instead of independent samples, use a proposal density q that depends on the state $x^{(t)}$

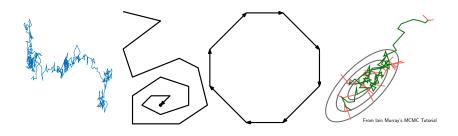
- Markov property: $p(x^{(t+1)}|x^{(1)},...,x^{(t)}) = T(x^{(t+1)}|x^{(t)})$ only depends on the previous setting/state of the chain
- ► *T* is called a **transition operator**
- Example: $T(x^{(t+1)}|x^{(t)}) = \mathcal{N}(x^{(t+1)}|x^{(t)}, \sigma^2 I)$
- ► Samples $x^{(1)}, ..., x^{(t)}$ form a Markov chain
- Samples x⁽¹⁾,...,x^(t) are no longer independent, but unbiased
 ▶ We can still average them



Four different behaviors of Markov chains:

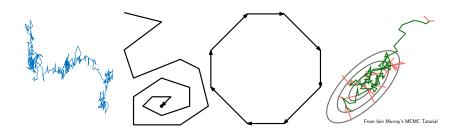
• Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)

Sampling IDAPI, Lecture 16 February 22–24, 2016



Four different behaviors of Markov chains:

- Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)
- Converge to an absorbing state

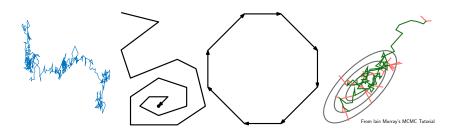


Four different behaviors of Markov chains:

• Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)

21

- Converge to an absorbing state
- Converge to a (deterministic) limit cycle



Four different behaviors of Markov chains:

- Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)
- Converge to an absorbing state
- Converge to a (deterministic) limit cycle
- Converge to an equilibrium distribution p^* : Markov chain remains in a region, bouncing around in a random way

- Remember objective: Explore/sample parameters that may have generated our data (generate samples from posterior)
 - ▶ Bouncing around in an equilibrium distribution is a good thing

¹We will call this p(x) in the following

- Remember objective: Explore/sample parameters that may have generated our data (generate samples from posterior)
 - ▶ Bouncing around in an equilibrium distribution is a good thing
- Design the Markov chain such that the equilibrium distribution is the desired posterior $p(\theta|\mathcal{D})^1$

¹We will call this p(x) in the following

- Remember objective: Explore/sample parameters that may have generated our data (generate samples from posterior)
 - ▶ Bouncing around in an equilibrium distribution is a good thing
- Design the Markov chain such that the equilibrium distribution is the desired posterior $p(\theta|\mathcal{D})^1$
- Generate a Markov chain that converges to that equilibrium distribution (independent of start state)

¹We will call this p(x) in the following

- Remember objective: Explore/sample parameters that may have generated our data (generate samples from posterior)
 - ▶ Bouncing around in an equilibrium distribution is a good thing
- Design the Markov chain such that the equilibrium distribution is the desired posterior $p(\theta|\mathcal{D})^1$
- Generate a Markov chain that converges to that equilibrium distribution (independent of start state)
- Although successive samples are dependent we can effectively generate independent samples by running the Markov chain long enough: Discard most of the samples, retain only every *M*th sample

Sampling IDAPI, Lecture 16 February 22–24, 2016

¹We will call this p(x) in the following

2 Markov chain conditions:

- Invariance/Stationarity: If you run the chain for a long time and you are in the equilibrium distribution, you stay in equilibrium if you take another step.
 - **▶** Self-consistency property

Sampling IDAPI, Lecture 16 February 22–24, 2016

2 Markov chain conditions:

- Invariance/Stationarity: If you run the chain for a long time and you are in the equilibrium distribution, you stay in equilibrium if you take another step.
 - ➤ Self-consistency property
- **Ergodicity:** Any state can be reached from any state.
 - ▶ Equilibrium distribution is the same no matter where we start

2 Markov chain conditions:

- Invariance/Stationarity: If you run the chain for a long time and you are in the equilibrium distribution, you stay in equilibrium if you take another step.
 - **▶** Self-consistency property
- **Ergodicity:** Any state can be reached from any state.
 - ➤ Equilibrium distribution is the same no matter where we start

Property

Ergodic Markov chains only have one equilibrium distribution

2 Markov chain conditions:

- Invariance/Stationarity: If you run the chain for a long time and you are in the equilibrium distribution, you stay in equilibrium if you take another step.
 - **▶** Self-consistency property
- **Ergodicity:** Any state can be reached from any state.
 - ▶ Equilibrium distribution is the same no matter where we start

23

Property

Ergodic Markov chains only have one equilibrium distribution

▶ Use ergodic and stationary Markov chains to generate samples from the equilibrium distribution

Invariance and Detailed Balance

• Invariance: Each step leaves the distribution p^* invariant (we stay in p^*):

$$p^*(x') = \sum_{x} T(x'|x)p^*(x)$$

Invariance and Detailed Balance

• Invariance: Each step leaves the distribution p^* invariant (we stay in p^*):

$$p^*(x') = \sum_{x} T(x'|x)p^*(x)$$

Once we sample from p^* , the transition operator will not change this, i.e., we do not fall back to some funny distribution $p \neq p^*$

Invariance and Detailed Balance

• Invariance: Each step leaves the distribution p^* invariant (we stay in p^*):

$$p^*(x') = \sum_{x} T(x'|x) p^*(x)$$

Once we sample from p^* , the transition operator will not change this, i.e., we do not fall back to some funny distribution $p \neq p^*$

Sufficient condition for p* being invariant:
 Detailed balance:

$$p^*(x)T(x'|x) = p^*(x')T(x|x')$$

▶ Also ensures that the Markov chain is reversible

- Assume that $\tilde{p} = Zp$ can be evaluated easily (in practice: $\log \tilde{p}$)
- Proposal density $q(x'|x^{(t)})$ depends on last sample $x^{(t)}$. Example: Gaussian centered at $x^{(t)}$

- Assume that $\tilde{p} = Zp$ can be evaluated easily (in practice: $\log \tilde{p}$)
- Proposal density $q(x'|x^{(t)})$ depends on last sample $x^{(t)}$. Example: Gaussian centered at $x^{(t)}$

Metropolis-Hastings Algorithm

- 1. Generate $x' \sim q(x'|x^{(t)})$
- 2. If

$$\frac{q(\mathbf{x}^{(t)}|\mathbf{x}')\tilde{p}(\mathbf{x}')}{q(\mathbf{x}'|\mathbf{x}^{(t)})\tilde{p}(\mathbf{x}^{(t)})} \ge u, \qquad u \sim U[0,1]$$

accept the sample $x^{(t+1)} = x'$. Otherwise set $x^{(t+1)} = x^{(t)}$.

- Assume that $\tilde{p} = Zp$ can be evaluated easily (in practice: $\log \tilde{p}$)
- Proposal density $q(x'|x^{(t)})$ depends on last sample $x^{(t)}$. Example: Gaussian centered at $x^{(t)}$

Metropolis-Hastings Algorithm

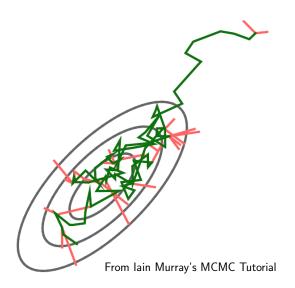
- 1. Generate $x' \sim q(x'|x^{(t)})$
- 2. If

$$\frac{q(\mathbf{x}^{(t)}|\mathbf{x}')\tilde{p}(\mathbf{x}')}{q(\mathbf{x}'|\mathbf{x}^{(t)})\tilde{p}(\mathbf{x}^{(t)})} \ge u, \qquad u \sim U[0,1]$$

accept the sample $x^{(t+1)} = x'$. Otherwise set $x^{(t+1)} = x^{(t)}$.

 If proposal distribution is symmetric: Metropolis Algorithm (Metropolis et al., 1953); Otherwise Metropolis-Hastings Algorithm (Hastings, 1970)

Example



Sampling IDAPI, Lecture 16 February 22–24, 2016

Step-Size Demo

- Explore $p(x) = \mathcal{N}(x | 0, 1)$ for different step sizes σ .
- We can only evaluate $\log \tilde{p}(x) = -x^2/2$
- Proposal distribution q: Gaussian $\mathcal{N}(x^{(t+1)} | x^{(t)}, \sigma^2)$ centered at the current state for various step sizes σ
- Expect to explore the space between -2,2 with high probability

Sampling IDAPI, Lecture 16 February 22–24, 2016

- Acceptance rate depends on the step size of the proposal distribution
 - >> Exploration parameter

- Acceptance rate depends on the step size of the proposal distribution
 - **▶** Exploration parameter
- If we do not reject enough, the method does not work.

- Acceptance rate depends on the step size of the proposal distribution
 - ➤ Exploration parameter
- If we do not reject enough, the method does not work.
- In rejection sampling we do not like rejections, but in MH rejections tell you where the target distribution is.

Sampling IDAPI, Lecture 16 February 22–24, 2016

- Acceptance rate depends on the step size of the proposal distribution
 - ➤ Exploration parameter
- If we do not reject enough, the method does not work.
- In rejection sampling we do not like rejections, but in MH rejections tell you where the target distribution is.
- Theoretical results: in 1D 44%, in higher dimensions about 25% acceptance rate for good mixing properties

- Acceptance rate depends on the step size of the proposal distribution
 - **▶** Exploration parameter
- If we do not reject enough, the method does not work.
- In rejection sampling we do not like rejections, but in MH rejections tell you where the target distribution is.
- Theoretical results: in 1D 44%, in higher dimensions about 25% acceptance rate for good mixing properties
- Tune the step size

Properties

- Samples are correlated >> Adaptive rejection sampling generates independent samples
- Unlike rejection sampling, the previous sample is used to reset the chain (if a sample was discarded)
- ► If q > 0, we will end up in the equilibrium distribution: $p^{(t)}(x) \stackrel{t \to \infty}{\longrightarrow} p^*(x)$
- Explore the state space by random walkMay take a while in high dimensions
- No further catastrophic problems in high dimensions

Sampling IDAPI, Lecture 16 February 22–24, 2016

Gibbs Sampling

Gibbs Sampling (Geman & Geman, 1984)

- Assumption: p(x) is too complicated to draw samples from directly, but its conditionals $p(x_i|x_{\setminus i})$ are tractable to work with
- Example:

$$y_i \sim \mathcal{N}(\mu, \tau^{-1}), \qquad \mu \sim \mathcal{N}(0, 1), \qquad \tau \sim \text{Gamma}(2, 1)$$

Gibbs Sampling (Geman & Geman, 1984)

- Assumption: p(x) is too complicated to draw samples from directly, but its conditionals $p(x_i|x_{\setminus i})$ are tractable to work with
- Example:

$$y_i \sim \mathcal{N}(\mu, \tau^{-1}), \qquad \mu \sim \mathcal{N}(0, 1), \qquad \tau \sim \text{Gamma}(2, 1)$$

Then

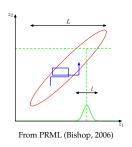
$$p(y, \mu, \tau) = \prod_{i=1}^{n} p(y_i | \mu, \tau) p(\mu) p(\tau)$$

$$\propto \tau^{n/2} \exp(-\frac{\tau}{2} \sum_{i} (y_i - \mu)^2) \exp(-\frac{1}{2} \mu^2) \tau \exp(-\tau)$$

$$p(\mu | \tau) = \mathcal{N}(\frac{\tau \sum_{i} y_i}{1 + n\tau}, (1 + n\tau)^{-1})$$

$$p(\tau | \mu) = \text{Gamma}(2 + \frac{n}{2}, 1 + \frac{1}{2} \sum_{i} (y_i - \mu)^2)$$

Algorithm



Assuming n parameters x_1, \ldots, x_n , Gibbs sampling samples individual variables conditioned on all others:

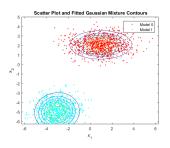
1.
$$x_1^{(t+1)} \sim p(x_1|x_2^{(t)}, \dots, x_n^{(t)})$$

2.
$$x_2^{(t+1)} \sim p(x_2|x_1^{(t+1)}, x_3^{(t)}, \dots, x_n^{(t)})$$

3. :

4.
$$x_n^{(t+1)} \sim p(x_n|x_1^{(t+1)},\ldots,x_{n-1}^{(t+1)})$$

Gibbs Sampling: Ergodicity



- p(x) is invariant
- Ergodicity: Sufficient to show that all conditionals are greater than 0.
 - Then any point in *x*-space can be reached from any other point (potentially with low probability) in a finite number of steps involving one update of each of the component variables.

Properties

- Gibbs is Metropolis-Hastings with acceptance probability 1:
 Sequence of proposal distributions q is defined in terms of conditional distributions of the joint p(x)
 - **▶** Converge to equilibrium distribution: $p^{(t)}(x) \stackrel{t\to\infty}{\longrightarrow} p(x)$
 - >> Exploration by random walk behavior can be slow

²http://mc-stan.org/

³http://www.mrc-bsu.cam.ac.uk/software/bugs/

⁴http://mcmc-jags.sourceforge.net/

Properties

- Gibbs is Metropolis-Hastings with acceptance probability 1:
 Sequence of proposal distributions q is defined in terms of conditional distributions of the joint p(x)
 - **▶** Converge to equilibrium distribution: $p^{(t)}(x) \stackrel{t\to\infty}{\longrightarrow} p(x)$
 - ➤ Exploration by random walk behavior can be slow
- No adjustable parameters (e.g., step size)

Sampling

²http://mc-stan.org/

³http://www.mrc-bsu.cam.ac.uk/software/bugs/

⁴http://mcmc-jags.sourceforge.net/

- Gibbs is Metropolis-Hastings with acceptance probability 1:
 Sequence of proposal distributions q is defined in terms of conditional distributions of the joint p(x)
 - **▶** Converge to equilibrium distribution: $p^{(t)}(x) \stackrel{t\to\infty}{\longrightarrow} p(x)$
 - ➤ Exploration by random walk behavior can be slow
- No adjustable parameters (e.g., step size)
- Applicability depends on how easy it is to draw samples from the conditionals

Sampling

²http://mc-stan.org/

³http://www.mrc-bsu.cam.ac.uk/software/bugs/

⁴http://mcmc-jags.sourceforge.net/

- Gibbs is Metropolis-Hastings with acceptance probability 1:
 Sequence of proposal distributions q is defined in terms of conditional distributions of the joint p(x)
 - **▶** Converge to equilibrium distribution: $p^{(t)}(x) \stackrel{t\to\infty}{\longrightarrow} p(x)$
 - ➤ Exploration by random walk behavior can be slow
- No adjustable parameters (e.g., step size)
- Applicability depends on how easy it is to draw samples from the conditionals
- May not work well if the variables are correlated

Sampling IDAPI, Lecture 16 February 22–24, 2016

35

²http://mc-stan.org/

³http://www.mrc-bsu.cam.ac.uk/software/bugs/

⁴http://mcmc-jags.sourceforge.net/

- Gibbs is Metropolis-Hastings with acceptance probability 1:
 Sequence of proposal distributions q is defined in terms of conditional distributions of the joint p(x)
 - **▶** Converge to equilibrium distribution: $p^{(t)}(x) \stackrel{t\to\infty}{\longrightarrow} p(x)$
 - >> Exploration by random walk behavior can be slow
- No adjustable parameters (e.g., step size)
- Applicability depends on how easy it is to draw samples from the conditionals
- May not work well if the variables are correlated
- Statistical software derives the conditionals of the model, and it works out how to do the updates: STAN², WinBUGS³, JAGS⁴

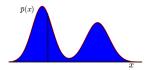
35

²http://mc-stan.org/

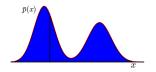
³http://www.mrc-bsu.cam.ac.uk/software/bugs/

⁴http://mcmc-jags.sourceforge.net/

Slice Sampling

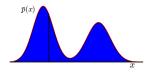


• **Idea:** Sample point (random walk) uniformly under the curve $\tilde{p}(x)$



- **Idea:** Sample point (random walk) uniformly under the curve $\tilde{p}(x)$
- Introduce additional variable u, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}$$
, $Z_p = \int \tilde{p}(x)dx$

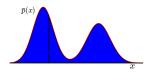


- **Idea:** Sample point (random walk) uniformly under the curve $\tilde{p}(x)$
- Introduce additional variable u, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}, \qquad Z_p = \int \tilde{p}(x) dx$$

► The marginal distribution over *x* is then

$$\int \hat{p}(x,u)du = \int_0^{\tilde{p}(x)} 1/Z_p du = \tilde{p}(x)/Z_p = p(x)$$



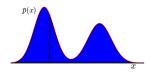
- **Idea:** Sample point (random walk) uniformly under the curve $\tilde{p}(x)$
- Introduce additional variable u, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}$$
, $Z_p = \int \tilde{p}(x)dx$

► The marginal distribution over *x* is then

$$\int \hat{p}(x,u)du = \int_0^{\tilde{p}(x)} 1/Z_p du = \tilde{p}(x)/Z_p = p(x)$$

 \blacktriangleright Obtain samples from unknown p(x) by sampling from $\hat{p}(x,u)$ and then ignore u values



• **Idea:** Sample point (random walk) uniformly under the curve $\tilde{p}(x)$

37

• Introduce additional variable u, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}, \qquad Z_p = \int \tilde{p}(x) dx$$

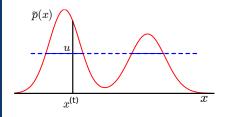
► The marginal distribution over *x* is then

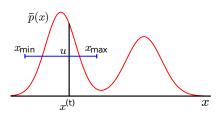
$$\int \hat{p}(x,u)du = \int_0^{\tilde{p}(x)} 1/Z_p du = \tilde{p}(x)/Z_p = p(x)$$

▶ Obtain samples from unknown p(x) by sampling from $\hat{p}(x, u)$ and then ignore u values

Gibbs sampling: Update one variable at a time

Slice Sampling Algorithm

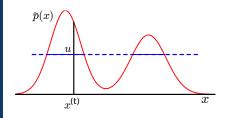


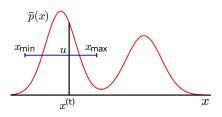


Adapted from PRML (Bishop, 2006)

- Repeat the following steps:
 - 1. Draw $u|x^{(t)} \sim \mathcal{U}[0, \tilde{p}(x)]$
 - 2. Draw $x^{(t+1)}|u \sim \mathcal{U}[\{x : \tilde{p}(x) > u\}]$ \Longrightarrow slice

Slice Sampling Algorithm





Adapted from PRML (Bishop, 2006)

- Repeat the following steps:
 - 1. Draw $u|x^{(t)} \sim \mathcal{U}[0, \tilde{p}(x)]$
 - 2. Draw $x^{(t+1)}|u \sim \mathcal{U}[\{x : \tilde{p}(x) > u\}]$ \Longrightarrow slice
- In practice, we sample $x^{(t+1)}|u$ uniformly from an interval $[x_{\min}, x_{\max}]$ around $x^{(t)}$.
- The interval is found adaptively (see Neal (2003) for details)

Relation to other Sampling Methods

Similar to:

- Metropolis: Just need to be able to evaluate $\tilde{p}(x)$ More robust to the choice of parameters (e.g., step size is automatically adapted)
- Gibbs: 1-dimensional transitions in state space
 No longer required that we can easily sample from 1-D conditionals
- Rejection: Asymptotically draw samples from the volume under the curve described by p

 No upper-bounding of p required

- Slice sampling can be applied to multivariate distributions by repeatedly sampling each variable in turn (similar to Gibbs sampling).
 - See (Neal, 2003; Murray et al., 2010) for more details
- This requires to compute a function that is proportional to $p(x_i|x_{\setminus i})$ for all variables x_i .

- Slice sampling can be applied to multivariate distributions by repeatedly sampling each variable in turn (similar to Gibbs sampling).
 - See (Neal, 2003; Murray et al., 2010) for more details
- ► This requires to compute a function that is proportional to $p(x_i|x_{\setminus i})$ for all variables x_i .
- No rejections
- Adaptive step sizes
- Easy to implement
- Broadly applicable

Discussion MCMC

- Initial samples are not from p*, but from some transient distribution. Can be discarded. → Burn-in of MCMC
- Asymptotic guarantee to converge to the equilibrium distribution for any kind of model
- General-purpose method to draw samples in any kind of probabilistic model
 ▶ Probabilistic Programming

Discussion MCMC

- Initial samples are not from p*, but from some transient distribution. Can be discarded. ➤ Burn-in of MCMC
- Asymptotic guarantee to converge to the equilibrium distribution for any kind of model
- General-purpose method to draw samples in any kind of probabilistic model
 ▶ Probabilistic Programming
- Convergence difficult to assess
- Long chains required in high dimensions
- Choice of proposal distribution is hard
- Need to store all samples (subsequent computations require to work with these samples)

References I

- [1] C. M. Bishop. *Pattern Recognition and Machine Learning*. Information Science and Statistics. Springer-Verlag, 2006.
- [2] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6(6):721–741, 1984.
- [3] P. Gilks, W. R.; Wild. Adaptive Rejection Sampling for Gibbs Sampling. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 41(2):337–348, 1992.
- [4] W. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. *Biometrika*, 57(1):97–109, 1970.
- [5] D. J. C. MacKay. *Information Theory, Inference, and Learning Algorithms*. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 2003.

References II

- [6] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equations of State Calculations by Fast Computing Machines. *Journal of Chemical Physics*, 21(6):1087–1092, 1953.
- [7] I. Murray, R. P. Adams, and D. J. MacKay. Elliptical Slice Sampling. In Y. W. Teh and M. Titterington, editors, *Proceedings of the 13th International Conference on Artificial Intelligence and Statistics*, JMLR: W&CP 9, pages 541–548, 2010.
- [8] R. M. Neal. Slice Sampling. *Annals of Statistics*, 31(3):705–767, 2003.
- [9] S. Thrun, W. Burgard, and D. Fox. *Probabilistic Robotics*. The MIT Press, Cambridge, MA, USA, 2005.