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Monte Carlo Methods—Motivation

§ Monte Carlo methods are computational techniques that make
use of random numbers

§ Two typical problems:
1. Problem 1: Generate samples txpsqu from a given probability

distribution ppxq

2. Problem 2: Estimate expectations of functions under that
distribution:

Er f pxqs “
ż

f pxqppxqdx

Example: Means/variances of distributions, marginal
likelihood
Complication: Integral cannot be evaluated analytically
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Monte Carlo Estimation

§ Statistical sampling can be applied to compute expectations

Er f pxqs “
ż

f pxqppxqdx

«
1
S

S
ÿ

s“1

f pxpsqq, xpsq „ ppxq

§ Example: Making predictions (e.g., Bayesian linear regression
with a training set D “ tX, yu at test input x˚)

ppy˚|x˚,Dq “
ż

ppy˚|θ, x˚qppθ|Dqdθ

«
1
S

S
ÿ

s“1

ppy˚|θ
psq, x˚q , θpsq „ ppθ|Dq

§ If we can sample from ppxq (or ppθq) we can approximate these
integrals
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Properties of Monte Carlo Sampling

Er f pxqs “
ż

f pxqppxqdx

«
1
S

S
ÿ

s“1

f pxpsqq, xpsq „ ppxq

§ Estimator is unbiased

§ Variance shrinks 9 1{S, regardless of the dimensionality of x
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Alternatives to Monte Carlo

Er f pxqs “
ż

f pxqppxqdx

To evaluate these expectations we can use other methods than Monte
Carlo:

§ Numerical integration (low-dimensional problems)

§ Deterministic approximations, e.g., Variational Bayes,
Expectation Propagation
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Back to Monte Carlo Estimation

Er f pxqs “
ż

f pxqppxqdx

«
1
S

S
ÿ

s“1

f pxpsqq, xpsq „ ppxq

§ How do we get these samples?

Need to solve Problem 1

§ Sampling from simple distributions

§ Sampling from complicated distributions
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Important Example

§ By specifying the model, we know the prior ppθq and the
likelihood ppD|θq

§ The unnormalized posterior is

ppθ|Dq9ppD|θqppθq

and there is often no hope to compute the normalization constant

§ Samples are a good way to characterize this posterior (important
for model comparison, Bayesian predictions, ...)
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Sampling Discrete Values

p = 0.3 p = 0.2 p = 0.5a b c

u = 0.55

§ u „ U r0, 1s, where U is the uniform distribution

§ u “ 0.55 ñ x “ c
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Continuous Variables

p(x)

x

~

More complicated.
Geometrically, sample uniformly from the area under the curve
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Rejection Sampling
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Rejection Sampling: Setting

p(x)

x

~

§ Assume sampling from ppzq is difficult

§ Evaluating p̃pzq “ Zppzq is easy (and Z may be unknown)

§ Find a simpler distribution (proposal distribution) qpzq from
which we can easily draw samples (e.g., Gaussian)

§ Find an upper bound kqpzq ě p̃pzq
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Algorithm

z0 z

u0

kq(z0)
kq(z)

p(z)~

acceptance arearejection area

Adapted from PRML (Bishop, 2006)

1. Generate z0 „ qpzq

2. Generate u0 „ U r0, kqpz0qs

3. If u0 ą p̃pz0q, reject the sample. Otherwise, retain z0
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Properties

z0 z

u0

kq(z0)
kq(z)

p(z)~

acceptance arearejection area

Adapted from PRML (Bishop, 2006)

§ Accepted pairs pz, uq are uniformly distributed under the curve
of p̃pzq

§ Probability density of the z-coordiantes of accepted points must
be proportional to p̃pzq

§ Samples are independent samples from ppzq
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Shortcomings

z0 z

u0

kq(z0)
kq(z)

p(z)~

acceptance arearejection area

Adapted from PRML (Bishop, 2006)

§ Finding k is tricky

§ In high dimensions the factor k is probably huge

§ Low acceptance rate
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Importance Sampling
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Importance Sampling

Key idea: Do not throw away all rejected samples, but give them
lower weight by rewriting the integral as an expectation under a
simpler distribution q (proposal distribution):

Epr f pxqs “
ż

f pxqppxqdx

“

ż

f pxqppxq
qpxq
qpxq

dx “
ż

f pxq
ppxq
qpxq

qpxqdx

“ Eq

„

f pxq
ppxq
qpxq



If we choose q in a way that we can easily sample from it, we can
approximate this last expectation by Monte Carlo:

Eq

„

f pxq
ppxq
qpxq



«
1
S

S
ÿ

s“1

f pxpsqq
ppxpsqq
qpxpsqq

“
1
S

S
ÿ

s“1

ws f pxpsqq

, xpsq „ qpxq
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Properties

§ Unbiased if q ą 0 where p ą 0 and if we can evaluate p

§ Breaks down if we do not have enough samples (puts nearly all
weight on a single sample)

Degeneracy (see also Particle Filtering (Thrun et al., 2005))

§ Many draws from proposal density q required, especially in high
dimensions

§ Requires to be able to evaluate true p. Generalization exists for p̃.
This generalization is biased (but consistent).

§ Does not scale to interesting (high-dimensional) problems

Different approach to sample from complicated (high-dimensional)
distributions
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Markov Chains
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Objective
Generate samples from an unknown target distribution.
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Markov Chains

Key idea: Instead of independent samples, use a proposal density q
that depends on the state xptq

§ Markov property: ppxpt`1q|xp1q, . . . , xptqq “ Tpxpt`1q|xptqq only
depends on the previous setting/state of the chain

§ T is called a transition operator

§ Example: Tpxpt`1q|xptqq “ N
`

xpt`1q | xptq, σ2I
˘

§ Samples xp1q, . . . , xptq form a Markov chain

§ Samples xp1q, . . . , xptq are no longer independent, but unbiased
We can still average them
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Behavior of Markov Chains

From Iain Murray’s MCMC Tutorial

Four different behaviors of Markov chains:

§ Diverge (e.g., random walk diffusion where xpt`1q „ N
`

xptq, I
˘

)

§ Converge to an absorbing state

§ Converge to a (deterministic) limit cycle

§ Converge to an equilibrium distribution p˚: Markov chain
remains in a region, bouncing around in a random way
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Converging to an Equilibrium Distribution

§ Remember objective: Explore/sample parameters that may have
generated our data (generate samples from posterior)

Bouncing around in an equilibrium distribution is a good thing

§ Design the Markov chain such that the equilibrium distribution
is the desired posterior ppθ|Dq1

§ Generate a Markov chain that converges to that equilibrium
distribution (independent of start state)

§ Although successive samples are dependent we can effectively
generate independent samples by running the Markov chain long
enough: Discard most of the samples, retain only every Mth
sample

1We will call this ppxq in the following
Sampling IDAPI, Lecture 16 February 22–24, 2016 22
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Conditions for Converging to an Equilibrium
Distribution

2 Markov chain conditions:

§ Invariance/Stationarity: If you run the chain for a long time and
you are in the equilibrium distribution, you stay in equilibrium if
you take another step.

Self-consistency property

§ Ergodicity: Any state can be reached from any state.
Equilibrium distribution is the same no matter where we start

Property
Ergodic Markov chains only have one equilibrium distribution

Use ergodic and stationary Markov chains to generate samples
from the equilibrium distribution
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Invariance and Detailed Balance

§ Invariance: Each step leaves the distribution p˚ invariant (we
stay in p˚):

p˚px1q “
ÿ

x
Tpx1|xqp˚pxq

Once we sample from p˚, the transition operator will not change
this, i.e., we do not fall back to some funny distribution p ‰ p˚

§ Sufficient condition for p˚ being invariant:
Detailed balance:

p˚pxqTpx1|xq “ p˚px1qTpx|x1q

Also ensures that the Markov chain is reversible
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Metropolis-Hastings
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Metropolis-Hastings

§ Assume that p̃ “ Zp can be evaluated easily (in practice: log p̃)
§ Proposal density qpx1|xptqq depends on last sample xptq.

Example: Gaussian centered at xptq

Metropolis-Hastings Algorithm

1. Generate x1 „ qpx1|xptqq

2. If
qpxptq|x1qp̃px1q

qpx1|xptqqp̃pxptqq
ě u , u „ Ur0, 1s

accept the sample xpt`1q “ x1. Otherwise set xpt`1q “ xptq.

§ If proposal distribution is symmetric: Metropolis Algorithm
(Metropolis et al., 1953); Otherwise Metropolis-Hastings
Algorithm (Hastings, 1970)
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Example

From Iain Murray’s MCMC Tutorial
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Step-Size Demo

§ Explore ppxq “ N
`

x | 0, 1
˘

for different step sizes σ.

§ We can only evaluate log p̃pxq “ ´x2{2

§ Proposal distribution q: Gaussian N
`

xpt`1q | xptq, σ2
˘

centered at
the current state for various step sizes σ

§ Expect to explore the space between ´2, 2 with high probability
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Step-Size Demo: Discussion

§ Acceptance rate depends on the step size of the proposal
distribution

Exploration parameter

§ If we do not reject enough, the method does not work.

§ In rejection sampling we do not like rejections, but in MH
rejections tell you where the target distribution is.

§ Theoretical results: in 1D 44%, in higher dimensions about 25%
acceptance rate for good mixing properties

§ Tune the step size
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Properties

§ Samples are correlated Adaptive rejection sampling generates
independent samples

§ Unlike rejection sampling, the previous sample is used to reset
the chain (if a sample was discarded)

§ If q ą 0, we will end up in the equilibrium distribution:
pptqpxq tÑ8

ÝÑ p˚pxq

§ Explore the state space by random walk
May take a while in high dimensions

§ No further catastrophic problems in high dimensions
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Gibbs Sampling
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Gibbs Sampling (Geman & Geman, 1984)

§ Assumption: ppxq is too complicated to draw samples from
directly, but its conditionals ppxi|xziq are tractable to work with

§ Example:

yi „ N
`

µ, τ´1˘ , µ „ N
`

0, 1
˘

, τ „ Gammap2, 1q

Then

ppy, µ, τq “
n
ź

i“1

ppyi|µ, τqppµqppτq

9τn{2 expp´
τ

2

ÿ

i
pyi ´ µq2q expp´1

2 µ2qτ expp´τq

ppµ|τq “ N
` τ

ř

i yi
1`nτ , p1` nτq´1˘

ppτ|µq “ Gammap2` n
2 , 1` 1

2

ÿ

i
pyi ´ µq2q
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Algorithm

z1

z2

L

l

From PRML (Bishop, 2006)

Assuming n parameters x1, . . . , xn, Gibbs sampling samples
individual variables conditioned on all others:

1. xpt`1q
1 „ ppx1|x

ptq
2 , . . . , xptqn q

2. xpt`1q
2 „ ppx2|x

pt`1q
1 , xptq3 , . . . , xptqn q

3.
...

4. xpt`1q
n „ ppxn|x

pt`1q
1 , . . . , xpt`1q

n´1 q

Sampling IDAPI, Lecture 16 February 22–24, 2016 33



Gibbs Sampling: Ergodicity

§ ppxq is invariant
§ Ergodicity: Sufficient to show that all conditionals are greater

than 0.
Then any point in x-space can be reached from any other point

(potentially with low probability) in a finite number of steps
involving one update of each of the component variables.
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Properties

§ Gibbs is Metropolis-Hastings with acceptance probability 1:
Sequence of proposal distributions q is defined in terms of
conditional distributions of the joint ppxq

Converge to equilibrium distribution: pptqpxq tÑ8
ÝÑ ppxq

Exploration by random walk behavior can be slow

§ No adjustable parameters (e.g., step size)
§ Applicability depends on how easy it is to draw samples from

the conditionals
§ May not work well if the variables are correlated
§ Statistical software derives the conditionals of the model, and it

works out how to do the updates: STAN2, WinBUGS3, JAGS4

2http://mc-stan.org/
3http://www.mrc-bsu.cam.ac.uk/software/bugs/
4http://mcmc-jags.sourceforge.net/
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Slice Sampling
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Slice Sampling (Neal, 2003)

p(x)

x

~

§ Idea: Sample point (random walk)
uniformly under the curve p̃pxq

§ Introduce additional variable u, define joint p̂px, uq:

p̂px, uq “

#

1{Zp if 0 ď u ď p̃pxq
0 otherwise

, Zp “

ż

p̃pxqdx

§ The marginal distribution over x is then
ż

p̂px, uqdu “
ż p̃pxq

0
1{Zpdu “ p̃pxq{Zp “ ppxq

Obtain samples from unknown ppxq by sampling from p̂px, uq
and then ignore u values

§ Gibbs sampling: Update one variable at a time
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Slice Sampling Algorithm

p(x)

x(t)

u

x

~ p(x)

x(t)

uxmin xmax

~

x

Adapted from PRML (Bishop, 2006)

§ Repeat the following steps:
1. Draw u|xptq „ U r0, p̃pxqs
2. Draw xpt`1q|u „ U rtx : p̃pxq ą uus slice

§ In practice, we sample xpt`1q|u uniformly from an interval
rxmin, xmaxs around xptq.

§ The interval is found adaptively (see Neal (2003) for details)
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Relation to other Sampling Methods

Similar to:

§ Metropolis: Just need to be able to evaluate p̃pxq
More robust to the choice of parameters (e.g., step size is
automatically adapted)

§ Gibbs: 1-dimensional transitions in state space
No longer required that we can easily sample from 1-D
conditionals

§ Rejection: Asymptotically draw samples from the volume under
the curve described by p̃
No upper-bounding of p̃ required
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Properties

§ Slice sampling can be applied to multivariate distributions by
repeatedly sampling each variable in turn (similar to Gibbs
sampling).

See (Neal, 2003; Murray et al., 2010) for more details

§ This requires to compute a function that is proportional to
ppxi|xziq for all variables xi.

§ No rejections

§ Adaptive step sizes

§ Easy to implement

§ Broadly applicable
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Discussion MCMC

§ Initial samples are not from p˚, but from some transient
distribution. Can be discarded. Burn-in of MCMC

§ Asymptotic guarantee to converge to the equilibrium distribution
for any kind of model

§ General-purpose method to draw samples in any kind of
probabilistic model Probabilistic Programming

§ Convergence difficult to assess

§ Long chains required in high dimensions

§ Choice of proposal distribution is hard

§ Need to store all samples (subsequent computations require to
work with these samples)
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