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Recommended reading: Bishop PRML 9.2, 10.1, 10.2



Motivation
Derivation
Application



Clustering: From K-means to Gaussian Mixtures

» Aim: find K clusters in the
data

» Objective function:

K
I=3 zakln — a2

n=1 k=1

where z,, = 1 if the nth point is in the kth cluster, 0 otherwise

» Difficult optimization problem (N + KD parameters)
» Easy to find a local optimum by iteration:
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Clustering: From K-means to Gaussian Mixtures

» Aim: find K clusters in the
data

» Objective function:

K
I=3 zakln — a2

n=1 k=1

where z,, = 1 if the nth point is in the kth cluster, 0 otherwise

» Difficult optimization problem (N + KD parameters)
» Easy to find a local optimum by iteration:
1. Fix cluster centers p,. Then the best option is to assign points
to the closest center
2. Fix assignments z,,. The best choice for the centers is the
mean of the points assigned to each cluster
3. Repeat until converged
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K-means advantages

» Fast to run

» Easy to code:



K-means advantages

» Fast to run

» Easy to code:

import numpy as np
from utils import squared_distances

def update_K_means_Z(X, mus):
d2 = squared_distances(X, mus)
return (abs((d2.T-np.min(d2, axis=1)).T)==0).astype(int)

def update_K_means_mus(X, Z):
return np.einsum(’nk,nd->kd’, Z/(np.sum(Z, axis=0).astype(float)), X)

def K_means_objective(X, Z, mus):
d2 = squared_distances(X, mus)
return np.einsum(’nk,nk’,d2, Z)



K-means disadvantages

Gives no indication of what the clusters are like

v

Sensitive to initialization

v

v

Can fail (potential division by zero)
» Can get stuck in a poor local optimum

» Not a generative model that would allow us to generate
(artificial) data/samples for a given set of parameters



Maximum likelihood (EM) Gaussian Mixture Model

» Generative model: i.e. we specify p(data|parameters)

» The distribution that generated the data is a weighted sum of
K Gaussians

» Each of the K Gaussians has its own mean and variance: p,,
) )

» the likelihood for each data point is:

K

p(xn,|parameters) = Z TeN(Xn ey, k)
k=1



Maximum likelihood (EM) Gaussian Mixture Model

» Generative model: i.e. we specify p(data|parameters)
» The distribution that generated the data is a weighted sum of
K Gaussians
» Each of the K Gaussians has its own mean and variance: p,,
X,
» the likelihood for each data point is:

K

p(xn,|parameters) = Z TeN(Xn ey, k)
k=1

» To generate samples from this model (given the parameters)
we could:
1. Use some sampling method with the full probability
distribution S0, ik N(Xp |y, Z)
2. Reformulate the model with an additional variable z
determining the class

Using a latent variable is much easier



GMM with a latent variable (Repetition)

» zis a one-of-K variable, so zx = 1 if the class is k, and 0
otherwise

» If p(zx = 1) = 7, then marginalisation of z returns the model

As a graphical model:

Xn




GMM with a latent variable

S a—
ZTL

Xn

It is now easier to sample:
1. take a sample for z (using a uniform number generator)

2. take a sample for p(x|z). This is now a single Gaussian so use
e.g. numpy.random.multivariate_normal



GMM with a latent variable

S a—
ZTL

Xn

It is now easier to sample:
1. take a sample for z (using a uniform number generator)
2. take a sample for p(x|z). This is now a single Gaussian so use
e.g. numpy.random.multivariate_normal
Example: K =3, and = = (0.4,0.5,0.1)
sample a uniform random variable. Say u = 0.945. This falls in

class 3, so z=(0,0,1) Now generate sample from
p(x|z3 = 1) = N(x|p3, Z3)



Fitting the GMM with EM

» As with K-means:

» finding the expected values of the z,, is possible, given all the
parameters
> if z, are fixed, it is possible to find the best 7, u, X

This results in an alternating algorithm similar to K-means, known
as Expectation Maximization



Implementation (almost a repeat of a previous lecture)

1. Initialize p;, X, 7k
2. E-step: Evaluate responsibilities for every data point x; using
current parameters Ty, fy, Xk:
WkN(X,‘“Lk, zk)
> TN (xilpj, X))
3. M-step: Re-estimate parameters 7y, ), X using the current
responsibilities rjx (from E-step):

1 N
Ky = Ny Zi:1 likXi

1 N

E(zik) = rixk =

=W Do rkxi = ) (xi — )T
_ Nk
T = N

where N, = Z,N:l Fie
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EM demo

» Video 1:
https://www.youtube.com/watch?v=TLg-fvTfqno
» Video 2:
https://www.youtube.com/watch?v=uUtpiKENEAM
» Code:

https://github.com/hughsalimbeni/variational_
inference_demos


https://www.youtube.com/watch?v=TLg-fvTfqno
https://www.youtube.com/watch?v=uUtpiK5NEAM
https://github.com/hughsalimbeni/variational_inference_demos
https://github.com/hughsalimbeni/variational_inference_demos

Shortcomings of EM GMM

v

Sensitive to initialization

v

Gives no indication of uncertainty in parameter values

v

No easy way of determining the number of clusters

v

Can fail due to problematic singularities (if a cluster has fewer
points than dimensions the covariance is singular)

“though a point estimate (e.g. mode or mean) can be easily obtained if
required



Shortcomings of EM GMM

» Sensitive to initialization
» Gives no indication of uncertainty in parameter values

» No easy way of determining the number of clusters

v

Can fail due to problematic singularities (if a cluster has fewer
points than dimensions the covariance is singular)

The Bayesian approach:

> Less sensitive to initialization

v

Provides a distribution over parameter values, rather than a
point estimate !

v

Provides the model evidence for comparison with other models

v

Gives a principled way to determine the number of clusters

“though a point estimate (e.g. mode or mean) can be easily obtained if
required



Bayesian Gaussian Mixture

» We want the means, covariances and mixture probabilities to
be random variables



As a graphical model
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Maximum likelihood model Bayesian model
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Bayesian Gaussian Mixture

» We want the means, covariances and mixture probabilities to
be random variables

» For the mean p and covariance X, the natural (conjugate)
choice is a Normal/Wishart:

» We specify the general shape Wy, a constant that determines
the variability of samples v, a center mg and a constant by to
specify how far the mean should be from mg on average.

> p(p, E) = N(plmo, (BoZ 1)1 )W(E W, vo)

» We specify a (flat) Dirichlet prior for the mixture probabilities



Visualizing the Normal /Wishart prior

» Video 1:
https://www.youtube.com/watch?v=-9pyLOWXCsE&
feature=youtu.be

» Video 2:
https://www.youtube.com/watch?v=U0_R8-BaJAU&
feature=youtu.be

» Code:

https://github.com/hughsalimbeni/variational_
inference_demos


https://www.youtube.com/watch?v=-9pyL0WXCsE&feature=youtu.be
https://www.youtube.com/watch?v=-9pyL0WXCsE&feature=youtu.be
https://www.youtube.com/watch?v=UO_R8-BaJAU&feature=youtu.be
https://www.youtube.com/watch?v=UO_R8-BaJAU&feature=youtu.be
https://github.com/hughsalimbeni/variational_inference_demos
https://github.com/hughsalimbeni/variational_inference_demos

Bayesian GMM

While the likelihood is the same as before:

K
p(xplm, pu, X) = ZWkN(xn‘HkaAk)
k=1
or
K
p(xnlZ, p, X H (Xnlpte, Zi) ™™, znk € {0, 1}

we now have a rather more complicated joint distribution:

pP(X,Z,p, X, m) = p(X|Z, p, X)p(Z|m)p(r) p(p|X)p(X)

From here we work with A = X!



As a graphical model

O_

Xn
>
N N
Maximum likelihood model Bayesian model

From Bishop PRML 06



Bayesian GMM inference

™ Zp A

O_

Xn p

N

—

We need to integrate out all the unobserved variables:

p(X) = / / / / p(X|Z, 1, N)p(Z|m)p() (s N)p(A) dZd Nl

As the unobserved variables are tangled up in the integrand,
unfortunately such integration is analytically intractable.



Variational GMM

» Video 1:
https://youtu.be/j1LmIBS8EONA
» Video 2:
https://youtu.be/Fq-oTp2Kpzo
> Code:

https://github.com/hughsalimbeni/variational_
inference_demos


https://youtu.be/j1LmIB8EoNA
https://youtu.be/Fq-oTp2Kpzo
https://github.com/hughsalimbeni/variational_inference_demos
https://github.com/hughsalimbeni/variational_inference_demos

Why we need Bayesian models

» Point estimates can be misleading, and give no indication of
uncertainty

» Bayesian methods are much more robust, especially with small
data sets

» Bayesian methods incorporate prior beliefs in a principled way

What stops us using Bayesian models?
» Typically intractable in all but the most simple cases
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» That's is.



Why we need Bayesian models

» Point estimates can be misleading, and give no indication of
uncertainty

» Bayesian methods are much more robust, especially with small
data sets

» Bayesian methods incorporate prior beliefs in a principled way

What stops us using Bayesian models?
» Typically intractable in all but the most simple cases
» That's is.

Variational inference is one way of making complex Bayesian
models tractable



Motivation
Derivation
Application



Problem
We have:
> A generative model: p(X|Z) and p(Z)

» A task:
» find the model evidence:

p(X) = [ p(Xi2) p(2) dZ
» find the posterior over the latent variables:

p(X[|2) p(Z)

ZIX) =
p(Z|X) p(X)

We assume:

» Exact inference requires intractable integration
We want:

» To perform exact inference tractably...

» without simplifying the model itself



Two options

1. Approximate the exact model with finitely many samples
(Lecture 16)
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vYvyy
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2. Use a simpler surrogate model, which is as close as possible to
the true model



Two options

1. Approximate the exact model with finitely many samples
(Lecture 16)

> pros:
> Asymptotically correct
> cons:

v

Only finite time available

Usually scales poorly with dimension

Difficult to determine the quality of approximation
Often requires fine tuning to get good results

vYvyy

2. Use a simpler surrogate model, which is as close as possible to
the true model

> pros:
> Can be fast and scalable to high dimension
> Deterministic (i.e. running the algorithm twice produces the

same answer)

> cons:
> Not the true model
> Approximation might lose important dependencies
> May still result in intractable integrals



In summary

Broadly:

» Sampling methods:
Stochastic approximate inference for the exact model

» Variational methods:
Exact deterministic inference for an approximate model

The good news: the ‘approximate model’ can be guaranteed to be
the best possible approximation, for a given approximating family

In general:
» High-dimensional integration is very hard

» Optimization can be easier



Notation
p

probabilities relating to the exact
model

probabilities relating to the surrogate
model

latent (unobserved) variables
observed variables

= [ f(X)p(X)dX, assuming the distribution
of X is obvious

= [ f(X,Z)q(Z)dZ, if we need to be careful
which distribution we take the expectation over

log p(X) = log | p(X,Z)dZ the log marginal likelihood



Before we start...
» Easy to work with:

» p(X|Z) . This is just the probability of the data, given the
latent variables. If the latent variables are given things are easy
» anything involving g, by design
» Tricky to work with:

» p(Z), since the true distribution over the unobserved
variables is assumed intractable
» Very hard to calculate:

> p(X) = [ p(X|Z) p(Z) dZ
p(X|Z) p(Z)
p(X)
Some important things to remember:
> KL(a(x)[|b(x)) = Eouy log 36 dx
> KL(a(x)[|b(x)) = —E,(x)log b(x) + H(a), H(.) is the entropy
» KL(a(x)||b(x)) > 0, with equality iff a ~ b

> p(Z|X) =



The important bit of maths (v1)

» It can be shown that? that:

X,Z z
L(X) = Eq(z) log pg(z)) + Eqz) log 7,)‘(7;'))()

2j.e. you will show it in the tutorial
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L(X) = Eq(z) log 2 &t Eq(z) log 7p72|x)
» The second term is —KL( q(Z) || p(Z|X) ) <0

» We can choose g to make this KL term as close to zero as
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The important bit of maths (v1)

» |t can be shown thz?t2 ’ghat @)
L(X) = Eq(z) log 2 &t Eq(z) log 7})‘(72')()
» The second term is —KL( q(Z) || p(Z|X) ) <0

» We can choose g to make this KL term as close to zero as
possible. This is the same as making g(Z) as close as

possible to p(Z|X) .

» The other term is called the Evidence Lower BOund (ELBO).
Minimizing the KL term is the same as maximizing the ELBO

Therefore:

(max ELBO wrt q) <= ( q(Z) is as close as possible to p(Z|X) )

2j.e. you will show it in the tutorial



Disclaimer

We have been sloppy with notation

q(Z) depends on X, so it should be written g(Z|X). We are never
interested in e.g. g(X|Z), however, so it is safe to drop the
dependency



The important bit of maths (v2)

> L(X) = log Eq(z) 25202

3f(E[Z]) > E[f(Z)] if f is concave. The logarithm-is concave



The important bit of maths (v2)

> E(X) — IOgEq(Z) P(X|Z)p(Z)

q(Z)
: . )\ p(Z(5)
» Recall importance sampling: exp £(X) ~ %Z %,

where Z(5) ~ g and S is the number of samples

3f(E[Z]) > E[f(Z)] if f is concave. The logarithm-is concave



The important bit of maths (v2)

> L(X) = log Eq(z) 25202

: . )\ p(Z(5)
» Recall importance sampling: exp £(X) ~ %Z %,
where Z(5) ~ g and S is the number of samples

» Instead of sampling, use Jensen's inequality®. We have:

L(X) = IogEq(z)ip(xc"%%’)’(z)

(X[2)p(2) ) _

3f(E[Z]) > E[f(Z)] if f is concave. The logarithm-is concave



A closer look at the ELBO

We can write the ELBO in a few different ways
X|Z)p(Z
ELBO = Eq(z) log 2X202) ]
= Eqz)logp(X|Z) + Eq(z) log %

= Eyz)logp(X|Z) — KL(a(Z)|p(Z))
= reconstructed loglikelihood - a KL penalty (regularizer) term

ELBO = Eq(z) log 2X202)

= [Eyz)log p(X|Z) + Ey(z) log p(Z) + H(q)



How to find g7

Clearly the best g(Z) would just be p(Z|X), but that defeats the
point...

There are two specific approaches
» Mean field: we assume g factorizes

» Parametric family: we assume g belongs to some tractable
family

Today we will cover only the mean field approach



Mean field important result

> If
qu Z;) = q1(21)q2(22)-.-.qm(Zm)



Mean field important result

> If
q(Z) = Hq,-(Z,-) = q1(£1)q2(22)...qm(Zm)

1
» The optimal factors are given by:

q; < exp (Ejx;log p(X, Z))



Mean field approximation

» We assume that q(Z) = [[; qi(Zi) = q1(Z1)q2(22)...qm(Zm)-
Call each factor g; for convenience

» So we have
ELBO = Eqz)p(X,Z) — Eqz)9(2)

= fqlqg...qM |ng(X,Z)ledZQ...dZM
—fQ1Q2~--qM Iog(q1q2...qM)ledZ2...dZM
» Using the functional derivative # we have ° %ELBO =
[ @2...qmlog p(X, Z)dZs...dZp — log g1 + const.
> Let gi be the optimal g; that maximizes the ELBO. Then q7
satisfies %ELBO =0
a1
> This gives i o< exp (Eq,q5...q4 log p(X, Z))
» Similarly g7 o exp (Ejilog p(X,Z)) , where E;; means the
expectation over all the g; with j #/

4ie. 5‘;7((;,)) =d0(z—2')

Sthis will be an exercise




Mean field summary

» The optimal factors are given by:
q; o exp (Ej;log p(X, Z))

» Note we have made no assumption about the form of the g;,
beyond the factorization. This is sometimes called 'free form’
optimization for this reason.

» We could find the normalization constant by integrating over
Z;, but in practice we will spot it by inspection



Motivation
Derivation
Application



Mean field example 1: 2D Gaussian

~1
Consider a 2D Gaussian: z ~ N (21> K/ﬂ) ’ </\11 /\12>
4] 2 N1 Ao

>

We assume the variational distribution factorises as

q(z) = g1(z1)g2(22). Notice that full distribution doesn't
unless /\21 = /\12 =0

We know the optimal factor

log g7 (21) = Eq,(z,) log p(2) + const.

Note that this is function of z;, so we only need consider
terms depending on z;

For the multivariate normal, the logpdf is just a quadratic form
in z1 (and 2).

The details of the derivation are left for the tutorial



Mean field example 1: 2D Gaussian continued

1

22

05

0 05 z 1
@)

Figure: From PRML (Bishop, 2006)

» The final result is:

qi(z1) = N(zi|p1, Ayy')
and similarly for g

» Note that we did not specify that the factors should be
Gaussian. The Gaussian is the optimal solution over all
possible functions, given the factorisation we started with



2D Gaussian demo

Video:
https://www.youtube.com/watch?v=aGtWphP2W_Q


https://www.youtube.com/watch?v=aGtWphP2W_Q

Variational Inference for Bayesian GMM
Recall the graphical model:

™

Or in symbols:
p(X,Z, p, N, ) = p(X|Z, p, N)p(Z|7)p(7)p(p|A)p(N)

We choose the form of the variational posterior to be as rich as
possible:

q(Z, A, 7‘-) = q(Z)q(Tl', K, A)

It turns out that this is all we need to assume to make things
tractable



What we need

All we need is two expectations:

q"(Z) =expEx pun (log p (X, Z, 7, 1,N))

and
q" (m, pu,N) = expEz (log p (X, Z, 7,11, N))



The log joint
Recall the full joint:

P(X,Z, pu, N, ) = p(X|Z, p, N)p(Z|m ) p() p(e| ) p(N)

Separating out the terms we have:

K

logp (X, Z,7,u,N) = Z[
k=1

log [ T £ (xnlzak: 21, Ti)+

n

log H p(znk|mK)+

n

log p () +
log p (pex| i) +

|ng(/\k)}



The log joint
Recall the full joint:

P(X,Z, pu, N, ) = p(X|Z, p, N)p(Z|m ) p() p(e| ) p(N)

Separating out the terms we have:

K K
log p (X, Z,m1,A) = Y| logp (X, Z,mA) = Y|
k=1 k=1
|Ong(Xn‘znk7Nkvzk + |OgHN(Xn’/J'kaAk_l Zk‘i‘
n n
Iong(z,,k]ﬂ'k)—i- IogHﬂkZ"H-
n n
log p (k) + log D (r|ao) +
log p (i |\e) + log AV (paidmo, (Boe) ™) +

|ogp(/\k)} log W (Ax|Wo, VO)}



In full glory...

K
log p (X, Z,m,u,N) = Z[
k=1

M=

2% (~4 log Nkl = 3(xn = 1) Tk (xo — p1i) )+

3
Il
N

2" log 74+

5 1M

ag — 1) log i+

Llog |Bolk| — L(pex — mo) T (Bolk) (1 — mo) +

(2221 log Al — 3tr (Wo"A) ]

where we dropped the constant terms



Start with Z

To compute

log ¢" (Z) = Er . (log p (X, Z,7,u,N))

we need only consider terms that depend on z,



For Z, terms needed:

K
log p (X, Z, 7,,N) =)

k=1

_|_

(g — 1) log i+

— Llog [BoMk| — &1 — mo) T (Bol\k) (1ic — mo) +
-

( D 1) log |Ax| — %tr (Wo_ll\k)]

DA 67/79



Finding g*(Z)

So we have log g* (Z) = >,

B, (an (—% log |A] — 2 (xn — pt) " Ak (xn — uk)) + Znk log ﬂk) +cst

+ constant terms.
Since the expectation is not over z,, we can take the z,, out

log g* (Z) = D _ 2ok log pok
nk

where
log prk = Ex p A (—% log [N — 3(xn — pse) " Ak (xn — p1) + log 7"k)

While p doesn't look promising, this is actually a nice answer for Z.



The final result for g*(Z2)

Taking exponentials we have:
g (Z) o< [T T oos™
n ok

Which is just

¢ 2) = [T T ™
n k

where rpy is the normalized version of p, , i.e. another categorical
random variable with updated probabilities.
» We now know E (z,x) = rnk

» Note that we can’t calculate the expectations until we know
the variational posteriors of the other variables.



The other expectation

Next we consider the second expectation:

q* (m,u,N) = expEz (log p (X, Z, ,u,N))

Since Z d-separates 7 from all the other nodes we have
q(m, p,A) =q(m)q(p,N)

Note that we didn't have to assume this. It fell out naturally.



For 7, terms needed:

K
log p (X, Z,m,p,N) = Z[
k=1

NE

2% (=4 log |A] = 3 xn — 1) Ak (xn = 111

3
Il
N

2" log 7y +

M=

n=1

(g — 1) log 7y +
— Jlog | Bolk| — A (pi — mo) " (BoMk) (i — mo) +
(7”0—29—1) log [Aw] — Ltr (Wo1A,) }

Note these terms do not depend on g or Ay, so we have
qg(m,u,N) = q(m)q(p,N)



Terms involving 7

So we have have:

K
log g* (m,u,N) = Ez ZZz”klogﬂ'k—i-(ao—l)logﬂ'k

k=1 n=1
~+terms not containing 7
So
K N
logg* () =Eg Z Zz”k log i + (g — 1) log 7y + const
k=1 n=1

Since we know E (z,,) = rpx we have

K N

log ¢ ( ZZ r"Klog ) + (g — 1) log 74 + const
k=1 n=1



Result for g*(7)

Rearranging we have:

N
log ¢* (7) = Z <Z rk 4 ag — 1) log 7 + const

k n=1

This is exactly the form of another Dirichlet distribution:

N
q"(m)=D (7\"&0 + Z r"k>
n=1



The remaining q(u, \)

Now we can compute log ¢* (i,A) by looking at all the terms that
contain ) or Ag .

It turns out that this is just another Normal/Wishart, but we won't
do the details as they are ugly but straightforward (we just need to
keep using E (znx) = rax and do some heavy duty completing the
square)



To conclude

The important point is that all the posteriors can be found
analytically, but they all depend on p,k, which was defined as

10 pok = B un (—3 108 [Nl = 3(xn = )T Ak (xn — 1) + log i )

Now we have the variational posteriors over 7, u, A we can compute
these terms analytically.
We have to proceed iteratively:

» g*(m) and g*(p, N) depend on ¢(Z)
» g*(Z) depends on g(7) and g(u, AN)



Questions?



Ising Model

QL ®

s

5

from Bishop PRML 2006

p(X y = —exp Z Z XI)<J+UZXI.yI

i jéenbr;

Where x;,y; € {—1,1} and o is some constant
Finding p(x|y) requires a sum over 2V states



Ising Model 2

» Use a variational posterior g(x) = [[; q(x;)
» For a fully factorized variational posterior we have

qi(xi) oc expEji | xi Z Xj + oyiX;
jenbr,-
dropping all terms that do not depend on x;

» |t follows that

qi(xi) cexp | xi >+ oyixi
JEnbr;

Where 11j = E(q;)

» g; depends only on its neighbours

» Closed form updates can be found for p;



Ising Model Demo

Original Sigma = 0.0001 Sigma = 0.1

Sigma = 3.0
I AN
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