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Clustering: From K-means to Gaussian Mixtures

I Aim: find K clusters in the
data

I Objective function:

J =
N∑

n=1

K∑
k=1

znk‖xn − µk‖2

where znk = 1 if the nth point is in the kth cluster, 0 otherwise
I Difficult optimization problem (N + KD parameters)
I Easy to find a local optimum by iteration:

1. Fix cluster centers µk . Then the best option is to assign points
to the closest center

2. Fix assignments znk . The best choice for the centers is the
mean of the points assigned to each cluster

3. Repeat until converged
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K-means advantages

I Fast to run
I Easy to code:

import numpy as np
from utils import squared_distances

def update_K_means_Z(X, mus):
d2 = squared_distances(X, mus)
return (abs((d2.T-np.min(d2, axis=1)).T)==0).astype(int)

def update_K_means_mus(X, Z):
return np.einsum(’nk,nd->kd’, Z/(np.sum(Z, axis=0).astype(float)), X)

def K_means_objective(X, Z, mus):
d2 = squared_distances(X, mus)
return np.einsum(’nk,nk’,d2, Z)
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K-means disadvantages

I Gives no indication of what the clusters are like
I Sensitive to initialization
I Can fail (potential division by zero)
I Can get stuck in a poor local optimum
I Not a generative model that would allow us to generate

(artificial) data/samples for a given set of parameters
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Maximum likelihood (EM) Gaussian Mixture Model

I Generative model: i.e. we specify p(data|parameters)
I The distribution that generated the data is a weighted sum of

K Gaussians
I Each of the K Gaussians has its own mean and variance: µk ,

Σk

I the likelihood for each data point is:

p(xn|parameters) =
K∑

k=1

πkN(xn|µk ,Σk)

I To generate samples from this model (given the parameters)
we could:
1. Use some sampling method with the full probability

distribution
∑K

k=1 πkN(xn|µk ,Σk)
2. Reformulate the model with an additional variable z

determining the class

Using a latent variable is much easier
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GMM with a latent variable (Repetition)

I z is a one-of-K variable, so zk = 1 if the class is k , and 0
otherwise

I If p(zk = 1) = πk then marginalisation of z returns the model

As a graphical model:
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GMM with a latent variable

It is now easier to sample:
1. take a sample for z (using a uniform number generator)
2. take a sample for p(x|z). This is now a single Gaussian so use

e.g. numpy.random.multivariate_normal

Example: K = 3, and π = (0.4, 0.5, 0.1)
sample a uniform random variable. Say u = 0.945. This falls in
class 3, so z = (0, 0, 1) Now generate sample from
p(x|z3 = 1) = N(x |µ3,Σ3)
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Fitting the GMM with EM

I As with K-means:
I finding the expected values of the znk is possible, given all the

parameters
I if znk are fixed, it is possible to find the best π,µ,Σ

This results in an alternating algorithm similar to K-means, known
as Expectation Maximization
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Implementation (almost a repeat of a previous lecture)
1. Initialize µk ,Σk , πk

2. E-step: Evaluate responsibilities for every data point x i using
current parameters πk ,µk ,Σk :

E(zik) = rik =
πkN (x i |µk ,Σk)∑
j πjN (x i |µj ,Σj)

3. M-step: Re-estimate parameters πk ,µk ,Σk using the current
responsibilities rik (from E-step):

µk =
1
Nk

∑N

i=1
rikx i

Σk =
1
Nk

∑N

i=1
rik(x i − µk)(x i − µk)T

πk =
Nk

N

where Nk =
∑N

i=1 rik
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EM demo data
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EM demo initialization
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EM demo E Step
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EM demo M Step
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EM demo

I Video 1:
https://www.youtube.com/watch?v=TLg-fvTfqno

I Video 2:
https://www.youtube.com/watch?v=uUtpiK5NEAM

I Code:
https://github.com/hughsalimbeni/variational_
inference_demos

https://www.youtube.com/watch?v=TLg-fvTfqno
https://www.youtube.com/watch?v=uUtpiK5NEAM
https://github.com/hughsalimbeni/variational_inference_demos
https://github.com/hughsalimbeni/variational_inference_demos
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Shortcomings of EM GMM

I Sensitive to initialization
I Gives no indication of uncertainty in parameter values
I No easy way of determining the number of clusters
I Can fail due to problematic singularities (if a cluster has fewer

points than dimensions the covariance is singular)

The Bayesian approach:
I Less sensitive to initialization
I Provides a distribution over parameter values, rather than a

point estimate 1

I Provides the model evidence for comparison with other models
I Gives a principled way to determine the number of clusters

1though a point estimate (e.g. mode or mean) can be easily obtained if
required
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Bayesian Gaussian Mixture

I We want the means, covariances and mixture probabilities to
be random variables
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As a graphical model

Maximum likelihood model Bayesian model

From Bishop PRML 06
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Bayesian Gaussian Mixture

I We want the means, covariances and mixture probabilities to
be random variables

I For the mean µ and covariance Σ, the natural (conjugate)
choice is a Normal/Wishart:

I We specify the general shape W0, a constant that determines
the variability of samples ν0, a center m0 and a constant b0 to
specify how far the mean should be from m0 on average.

I p(µ,Σ) = N (µ|m0, (β0Σ
−1)−1)W(Σ−1|W0, ν0)

I We specify a (flat) Dirichlet prior for the mixture probabilities
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Visualizing the Normal/Wishart prior

I Video 1:
https://www.youtube.com/watch?v=-9pyL0WXCsE&
feature=youtu.be

I Video 2:
https://www.youtube.com/watch?v=UO_R8-BaJAU&
feature=youtu.be

I Code:
https://github.com/hughsalimbeni/variational_
inference_demos

https://www.youtube.com/watch?v=-9pyL0WXCsE&feature=youtu.be
https://www.youtube.com/watch?v=-9pyL0WXCsE&feature=youtu.be
https://www.youtube.com/watch?v=UO_R8-BaJAU&feature=youtu.be
https://www.youtube.com/watch?v=UO_R8-BaJAU&feature=youtu.be
https://github.com/hughsalimbeni/variational_inference_demos
https://github.com/hughsalimbeni/variational_inference_demos
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Bayesian GMM

While the likelihood is the same as before:

p(xn|π,µ,Σ) =
K∑

k=1

πkN(xn|µk ,Λk)

or

p(xn|Z,µ,Σ) =
K∏

k=1

N(xn|µk ,Σk)znk , znk ∈ {0, 1}

we now have a rather more complicated joint distribution:

p(X ,Z,µ,Σ,π) = p(X |Z ,µ,Σ)p(Z |π)p(π)p(µ|Σ)p(Σ)

From here we work with Λ = Σ−1
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As a graphical model

Maximum likelihood model Bayesian model

From Bishop PRML 06
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Bayesian GMM inference

We need to integrate out all the unobserved variables:

p(X ) =

∫∫∫∫
p(X |Z ,µ,Λ)p(Z |π)p(π)p(µ|Λ)p(Λ)dZdµdΛdπ

As the unobserved variables are tangled up in the integrand,
unfortunately such integration is analytically intractable.
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Variational GMM

I Video 1:
https://youtu.be/j1LmIB8EoNA

I Video 2:
https://youtu.be/Fq-oTp2Kpzo

I Code:
https://github.com/hughsalimbeni/variational_
inference_demos

https://youtu.be/j1LmIB8EoNA
https://youtu.be/Fq-oTp2Kpzo
https://github.com/hughsalimbeni/variational_inference_demos
https://github.com/hughsalimbeni/variational_inference_demos
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Why we need Bayesian models

I Point estimates can be misleading, and give no indication of
uncertainty

I Bayesian methods are much more robust, especially with small
data sets

I Bayesian methods incorporate prior beliefs in a principled way

What stops us using Bayesian models?
I Typically intractable in all but the most simple cases

I That’s is.
Variational inference is one way of making complex Bayesian
models tractable
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Problem
We have:

I A generative model: p(X|Z) and p(Z)

I A task:
I find the model evidence:

p(X) =

∫
p(X|Z) p(Z) dZ

I find the posterior over the latent variables:

p(Z|X) =
p(X|Z) p(Z)

p(X)

We assume:
I Exact inference requires intractable integration

We want:
I To perform exact inference tractably...
I without simplifying the model itself
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Two options
1. Approximate the exact model with finitely many samples

(Lecture 16)

I pros:
I Asymptotically correct

I cons:
I Only finite time available
I Usually scales poorly with dimension
I Difficult to determine the quality of approximation
I Often requires fine tuning to get good results

2. Use a simpler surrogate model, which is as close as possible to
the true model

I pros:
I Can be fast and scalable to high dimension
I Deterministic (i.e. running the algorithm twice produces the

same answer)
I cons:

I Not the true model
I Approximation might lose important dependencies
I May still result in intractable integrals
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In summary

Broadly:
I Sampling methods:

Stochastic approximate inference for the exact model
I Variational methods:

Exact deterministic inference for an approximate model
The good news: the ‘approximate model’ can be guaranteed to be
the best possible approximation, for a given approximating family

In general:
I High-dimensional integration is very hard
I Optimization can be easier
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Notation
p probabilities relating to the exact

model

q probabilities relating to the surrogate
model

Z latent (unobserved) variables

X observed variables

Ef (X) =
∫
f (X)p(X)dX, assuming the distribution

of X is obvious

Eq(Z)f (X,Z) =
∫
f (X,Z)q(Z)dZ, if we need to be careful

which distribution we take the expectation over

L(X) log p(X) = log
∫
p(X,Z)dZ the log marginal likelihood
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Before we start...
I Easy to work with:

I p(X|Z) . This is just the probability of the data, given the
latent variables. If the latent variables are given things are easy

I anything involving q , by design

I Tricky to work with:
I p(Z) , since the true distribution over the unobserved

variables is assumed intractable
I Very hard to calculate:

I p(X) =
∫

p(X|Z) p(Z) dZ

I p(Z|X) =
p(X|Z) p(Z)

p(X)

Some important things to remember:
I KL(a(x)||b(x)) = Ea(x) log

a(x)
b(x)dx

I KL(a(x)||b(x)) = −Ea(x) log b(x) + H(a), H(.) is the entropy
I KL(a(x)||b(x)) ≥ 0, with equality iff a ∼ b
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The important bit of maths (v1)

I It can be shown that2 that:
L(X) = Eq(Z) log

p(X,Z)
q(Z) + Eq(Z) log

q(Z)
p(Z|X)

I The second term is −KL( q(Z) || p(Z|X) ) ≤ 0
I We can choose q to make this KL term as close to zero as

possible. This is the same as making q(Z) as close as

possible to p(Z|X) .
I The other term is called the Evidence Lower BOund (ELBO).

Minimizing the KL term is the same as maximizing the ELBO

Therefore:
(max ELBO wrt q) ⇐⇒ ( q(Z) is as close as possible to p(Z|X) )

2i.e. you will show it in the tutorial
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Disclaimer

We have been sloppy with notation

q(Z) depends on X, so it should be written q(Z|X). We are never
interested in e.g. q(X|Z), however, so it is safe to drop the
dependency
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The important bit of maths (v2)

I L(X) = logEq(Z)
p(X|Z)p(Z)

q(Z)

I Recall importance sampling: expL(X) ≈ 1
S

∑ p(X|Z(s))p(Z(s))

q(Z(s))
,

where Z(s) ∼ q and S is the number of samples
I Instead of sampling, use Jensen’s inequality3. We have:
L(X) = logEq(Z)

p(X|Z)p(Z)
q(Z)

≥ Eq(Z) log
(
p(X|Z)p(Z)

q(Z)

)
= ELBO

3f (E[Z]) ≥ E[f (Z)] if f is concave. The logarithm is concave
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A closer look at the ELBO

We can write the ELBO in a few different ways

ELBO = Eq(Z) log
p(X|Z)p(Z)

q(Z)

= Eq(Z) log p(X|Z) + Eq(Z) log
p(Z)
q(Z)

= Eq(Z) log p(X|Z)− KL(q(Z)||p(Z))
= reconstructed loglikelihood - a KL penalty (regularizer) term

ELBO = Eq(Z) log
p(X|Z)p(Z)

q(Z)
= Eq(Z) log p(X|Z) + Eq(Z) log p(Z) + H(q)
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How to find q?

Clearly the best q(Z) would just be p(Z|X), but that defeats the
point...

There are two specific approaches
I Mean field: we assume q factorizes
I Parametric family: we assume q belongs to some tractable

family
Today we will cover only the mean field approach
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Mean field important result

I If
q(Z) =

∏
i

qi (Zi ) = q1(Z1)q2(Z2)...qM(ZM)

I The optimal factors are given by:

q∗i ∝ exp (Ej 6=i log p(X,Z))
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Mean field approximation

I We assume that q(Z) =
∏

i qi (Zi ) = q1(Z1)q2(Z2)...qM(ZM).
Call each factor qi for convenience

I So we have
ELBO = Eq(Z)p(X,Z)− Eq(Z)q(Z)

=
∫
q1q2...qM log p(X,Z )dZ1dZ2...dZM

−
∫
q1q2...qM log(q1q2...qM)dZ1dZ2...dZM

I Using the functional derivative 4 we have 5 δ
δq1

ELBO =∫
q2...qM log p(X,Z)dZ2...dZM − log q1 + const.

I Let q∗1 be the optimal q1 that maximizes the ELBO. Then q∗1
satisfies δ

δq1
ELBO = 0

I This gives q∗1 ∝ exp
(
Eq2q3...qM log p(X,Z)

)
I Similarly q∗i ∝ exp

(
Ej 6=i log p(X,Z)

)
, where Ej 6=i means the

expectation over all the qj with j 6= i

4i.e. δq(z)
δq(z′) = δ(z − z ′)

5this will be an exercise
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Mean field summary

I The optimal factors are given by:

q∗i ∝ exp (Ej 6=i log p(X,Z ))

I Note we have made no assumption about the form of the qi ,
beyond the factorization. This is sometimes called ’free form’
optimization for this reason.

I We could find the normalization constant by integrating over
Zi , but in practice we will spot it by inspection
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Mean field example 1: 2D Gaussian

Consider a 2D Gaussian: z ∼ N

((
z1
z2

) ∣∣∣∣(µ1
µ2

)
,

(
Λ11 Λ12
Λ21 Λ22

)−1
)

I We assume the variational distribution factorises as
q(z) = q1(z1)q2(z2). Notice that full distribution doesn’t
unless Λ21 = Λ12 = 0

I We know the optimal factor
log q∗1(z1) = Eq2(z2) log p(z) + const.

I Note that this is function of z1, so we only need consider
terms depending on z1

I For the multivariate normal, the logpdf is just a quadratic form
in z1 (and z2).

I The details of the derivation are left for the tutorial
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Mean field example 1: 2D Gaussian continued

z1

z2

(a)
0 0.5 1

0

0.5

1

Figure: From PRML (Bishop, 2006)

I The final result is:

q∗1(z1) = N(z1|µ1,Λ
−1
11 )

and similarly for q∗2
I Note that we did not specify that the factors should be

Gaussian. The Gaussian is the optimal solution over all
possible functions, given the factorisation we started with
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2D Gaussian demo

Video:
https://www.youtube.com/watch?v=aGtWphP2W_Q

https://www.youtube.com/watch?v=aGtWphP2W_Q
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Variational Inference for Bayesian GMM
Recall the graphical model:

Or in symbols:

p(X ,Z,µ,Λ,π) = p(X |Z ,µ,Λ)p(Z |π)p(π)p(µ|Λ)p(Λ)

We choose the form of the variational posterior to be as rich as
possible:

q(Z,µ,Λ,π) = q(Z )q(π,µ,Λ)

It turns out that this is all we need to assume to make things
tractable
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What we need

All we need is two expectations:

q∗ (Z) = expEπ,µ,Λ (log p (X,Z,π,µ,Λ))

and
q∗ (π,µ,Λ) = expEZ (log p (X,Z,π,µ,Λ))
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The log joint
Recall the full joint:

p(X,Z,µ,Λ,π) = p(X|Z,µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ)

Separating out the terms we have:

log p (X,Z,π,µ,Λ) =
K∑

k=1

[
log
∏
n

p (xn|znk ,µk ,Σk)+

log
∏
n

p (znk |πk)+

log p (πk) +

log p (µk |Λk) +

log p (Λk)
]

log p (X,Z,π,µ,Λ) =
K∑

k=1

[
log
∏
n

N
(
xn|µk ,Λk

−1)zk +

log
∏
n

πk
znk +

logD (π|α0) +

logN
(
µk |m0, (β0Λk)−1

)
+

logW (Λk |W0, v0)
]
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In full glory...

log p (X,Z,π,µ,Λ) =
K∑

k=1

[
N∑

n=1

znk
(
−1

2 log |Λk | − 1
2(xn − µk)TΛk (xn − µk)

)
+

N∑
n=1

znk logπk+

(α0 − 1) logπk+

− 1
2 log |β0Λk | − 1

2(µk −m0)T (β0Λk) (µk −m0) +(
ν0−D−1

2

)
log |Λk | − 1

2 tr
(
W0
−1Λk

) ]

where we dropped the constant terms
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Start with Z

To compute

log q∗ (Z) = Eπ,µ,Λ (log p (X,Z,π,µ,Λ))

we need only consider terms that depend on znk
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For Z , terms needed:

log p (X,Z,π,µ,Λ) =
K∑

k=1

[
N∑

n=1

znk
(
−1

2 log |Λk | − 1
2(xn − µk)TΛk (xn − µk)

)
+

N∑
n=1

znk logπk +

(α0 − 1) logπk+

− 1
2 log |β0Λk | − 1

2(µk −m0)T (β0Λk) (µk −m0) +(
ν0−D−1

2

)
log |Λk | − 1

2 tr
(
W0
−1Λk

) ]
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Finding q∗(Z )

So we have log q∗ (Z) =
∑

nk

Eπ,µ,Λ

(
znk

(
−1

2 log |Λ| −
1
2(xn − µk)TΛk (xn − µk)

)
+ znk logπk

)
+cst

+ constant terms.
Since the expectation is not over znk we can take the znk out

log q∗ (Z) =
∑
nk

znk log ρnk

where

log ρnk = Eπ,µ,Λ

(
−1

2 log |Λ| −
1
2(xn − µk)TΛk (xn − µk) + logπk

)
While ρ doesn’t look promising, this is actually a nice answer for Z .
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The final result for q∗(Z )

Taking exponentials we have:

q∗ (Z) ∝
∏
n

∏
k

ρnk
znk

Which is just
q∗ (Z) =

∏
n

∏
k

rnk
znk

where rnk is the normalized version of ρnk , i.e. another categorical
random variable with updated probabilities.

I We now know E (znk) = rnk
I Note that we can’t calculate the expectations until we know

the variational posteriors of the other variables.
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The other expectation

Next we consider the second expectation:

q∗ (π,µ,Λ) = expEZ (log p (X,Z,π,µ,Λ))

Since Z d-separates π from all the other nodes we have
q (π,µ,Λ) = q (π) q (µ,Λ)

Note that we didn’t have to assume this. It fell out naturally.
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For π, terms needed:

log p (X,Z,π,µ,Λ) =
K∑

k=1

[
N∑

n=1

znk
(
−1

2 log |Λk | − 1
2(xn − µk)TΛk (xn − µk)

)
N∑

n=1

znk logπk +

(α0 − 1) logπk +

− 1
2 log |β0Λk | − 1

2(µk −m0)T (β0Λk) (µk −m0) +(
ν0−D−1

2

)
log |Λk | − 1

2 tr
(
W0
−1Λk

) ]

Note these terms do not depend on µk or Λk , so we have
q (π,µ,Λ) = q (π) q (µ,Λ)
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Terms involving π
So we have have:

log q∗ (π,µ,Λ) = EZ

[
K∑

k=1

N∑
n=1

znk logπk + (α0 − 1) logπk

]

+terms not containing π

So

log q∗ (π) = EZ

K∑
k=1

N∑
n=1

znk logπk + (α0 − 1) logπk + const

Since we know E (znk) = rnk we have

log q∗ (π) =
K∑

k=1

N∑
n=1

rnk logπk + (α0 − 1) logπk + const
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Result for q∗(π)

Rearranging we have:

log q∗ (π) =
∑
k

(
N∑

n=1

rnk + α0 − 1

)
logπk + const

This is exactly the form of another Dirichlet distribution:

q∗ (π) = D

(
π|α0 +

N∑
n=1

rnk

)
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The remaining q(µ,Λ)

Now we can compute log q∗ (µ,Λ) by looking at all the terms that
contain µk or Λk .

It turns out that this is just another Normal/Wishart, but we won’t
do the details as they are ugly but straightforward (we just need to
keep using E (znk) = rnk and do some heavy duty completing the
square)
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To conclude

The important point is that all the posteriors can be found
analytically, but they all depend on ρnk , which was defined as

log ρnk = Eπ,µ,Λ

(
−1

2 log |Λ| −
1
2(xn − µk)TΛk (xn − µk) + logπk

)
Now we have the variational posteriors over π, µ,Λ we can compute
these terms analytically.
We have to proceed iteratively:

I q∗(π) and q∗(µ,Λ) depend on q(Z)

I q∗(Z) depends on q(π) and q(µ,Λ)
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Questions?
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Ising Model

from Bishop PRML 2006

p(x, y) =
1
Z

exp

∑
i

∑
j∈nbri

xixj + σ
∑
i

xiyi


Where xi , yi ∈ {−1, 1} and σ is some constant
Finding p(x|y) requires a sum over 2N states
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Ising Model 2
I Use a variational posterior q(x) =

∏
i q(xi )

I For a fully factorized variational posterior we have

qi (xi ) ∝ expEj 6=i

xi
∑
j∈nbri

xj + σyixi


dropping all terms that do not depend on xi

I It follows that

qi (xi ) ∝ exp

xi
∑
j∈nbri

µj + σyixi


Where µj = E(qj)

I qi depends only on its neighbours
I Closed form updates can be found for µi
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Ising Model Demo

Original Sigma = 0.0001 Sigma = 0.1

Corrupted Sigma = 1.0 Sigma = 3.0
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