Variational Inference

Hugh Salimbeni

29th February 2016

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 월 ∽ ♀ ○ 1/79

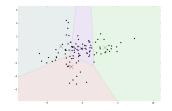
Recommended reading: Bishop PRML 9.2, 10.1, 10.2

Motivation Derivation Application

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 _____9へで ____79

- Aim: find K clusters in the data
- Objective function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

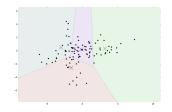


<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Difficult optimization problem (N + KD parameters)
- Easy to find a local optimum by iteration:

- Aim: find K clusters in the data
- Objective function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

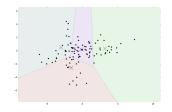


<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Difficult optimization problem (N + KD parameters)
- Easy to find a local optimum by iteration:
 - 1. Fix cluster centers μ_k . Then the best option is to assign points to the closest center

- Aim: find K clusters in the data
- Objective function:

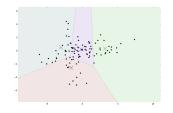
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$



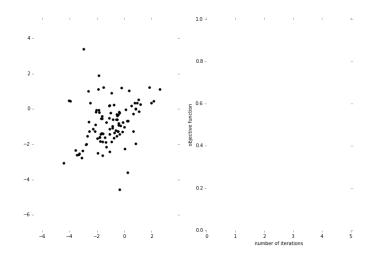
- Difficult optimization problem (N + KD parameters)
- Easy to find a local optimum by iteration:
 - 1. Fix cluster centers μ_k . Then the best option is to assign points to the closest center
 - 2. Fix assignments *z_{nk}*. The best choice for the centers is the mean of the points assigned to each cluster

- Aim: find K clusters in the data
- Objective function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$



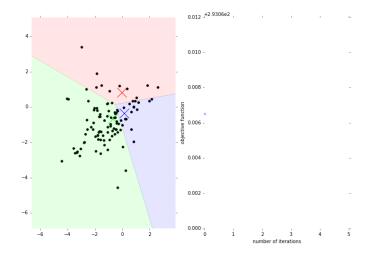
- Difficult optimization problem (N + KD parameters)
- Easy to find a local optimum by iteration:
 - 1. Fix cluster centers μ_k . Then the best option is to assign points to the closest center
 - 2. Fix assignments z_{nk} . The best choice for the centers is the mean of the points assigned to each cluster
 - 3. Repeat until converged



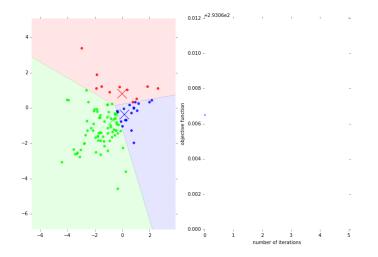
<ロト < 回 > < 臣 > < 臣 > 三 の へ で 4/79



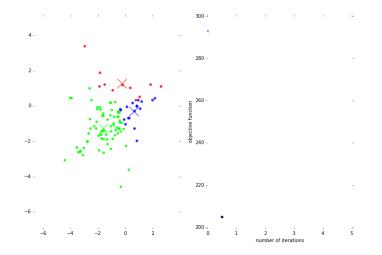
<ロト < 回 > < 臣 > < 臣 > ○ < つ < ろ / 79



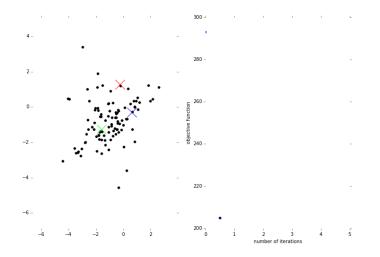
◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ < つ へ ○ 6/79</p>

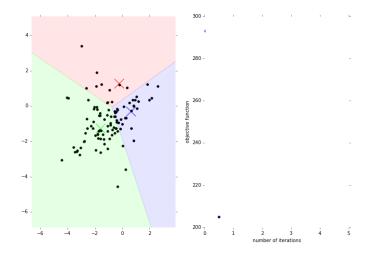


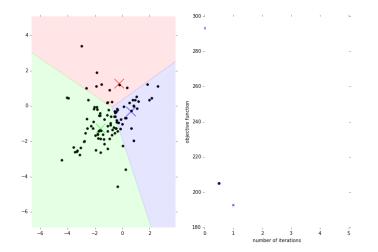
<ロト < 回 > < 臣 > < 臣 > 三 の へ で 7/79



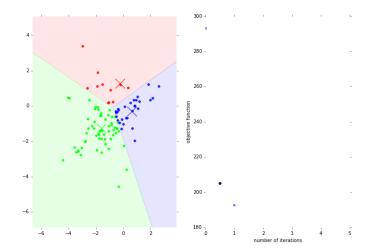
<ロト < 回 > < 臣 > < 臣 > 三 の へ で 8/79



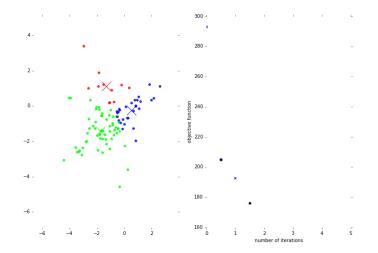


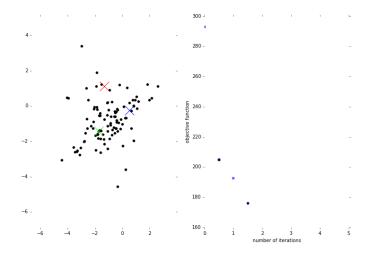


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

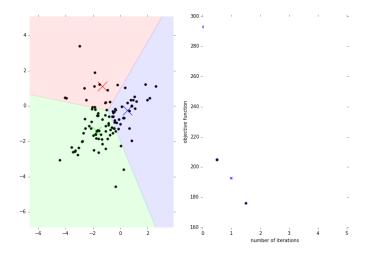


< □ > < @ > < 볼 > < 볼 > · 볼 · ♡ < ♡ 12/79

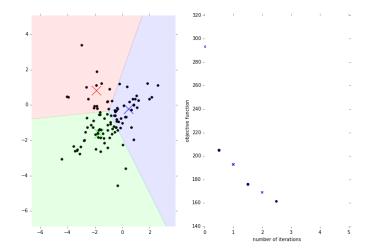




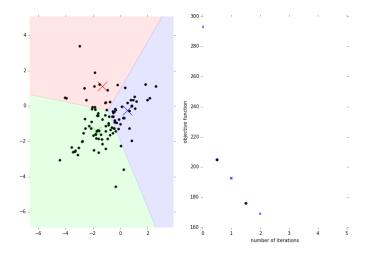
◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のQで 14/79



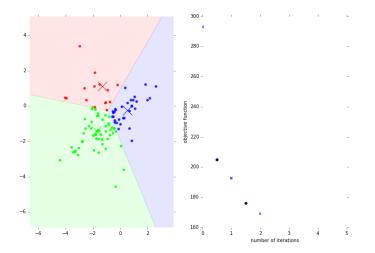
◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 15/79



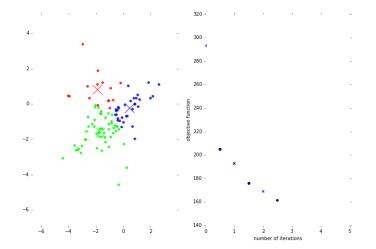
◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 16/79



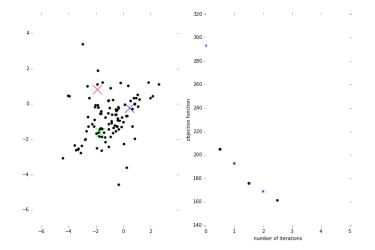
< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q ⁽²⁾ 17/79



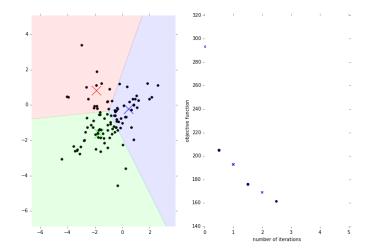
< □ ▶ < 률 ▶ < 불 ▶ < 불 ▶ 물 - 키익(° 18/79



◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 19/79



◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ○ ■ の Q @ 20/79



◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 21/79

K-means advantages

- Fast to run
- Easy to code:

K-means advantages

```
Fast to run
```

Easy to code:

```
import numpy as np
from utils import squared_distances
```

```
def update_K_means_Z(X, mus):
    d2 = squared_distances(X, mus)
    return (abs((d2.T-np.min(d2, axis=1)).T)==0).astype(int)
```

```
def update_K_means_mus(X, Z):
    return np.einsum('nk,nd->kd', Z/(np.sum(Z, axis=0).astype(float)), X)
```

```
def K_means_objective(X, Z, mus):
    d2 = squared_distances(X, mus)
    return np.einsum('nk,nk',d2, Z)
```

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 22/79

K-means disadvantages

- Gives no indication of what the clusters are like
- Sensitive to initialization
- Can fail (potential division by zero)
- Can get stuck in a poor local optimum
- Not a generative model that would allow us to generate (artificial) data/samples for a given set of parameters

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ♀ 23/79

Maximum likelihood (EM) Gaussian Mixture Model

- ► Generative model: i.e. we specify *p*(data|parameters)
 - The distribution that generated the data is a weighted sum of K Gaussians
 - Each of the K Gaussians has its own mean and variance: μ_k,
 Σ_k
 - the likelihood for each data point is:

$$p(\boldsymbol{x}_n | extsf{parameters}) = \sum_{k=1}^{K} \pi_k N(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q @ 24/79

Maximum likelihood (EM) Gaussian Mixture Model

- ► Generative model: i.e. we specify *p*(data|parameters)
 - The distribution that generated the data is a weighted sum of K Gaussians
 - Each of the K Gaussians has its own mean and variance: μ_k,
 Σ_k
 - the likelihood for each data point is:

$$p(\boldsymbol{x}_n| ext{parameters}) = \sum_{k=1}^K \pi_k N(\boldsymbol{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

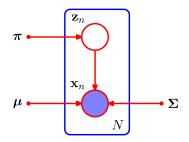
- To generate samples from this model (given the parameters) we could:
 - 1. Use some sampling method with the full probability distribution $\sum_{k=1}^{K} \pi_k N(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
 - 2. Reformulate the model with an additional variable *z* determining the class

Using a latent variable is much easier

GMM with a latent variable (Repetition)

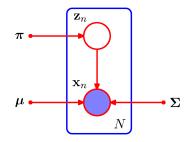
- ➤ z is a one-of-K variable, so z_k = 1 if the class is k, and 0 otherwise
- If $p(z_k = 1) = \pi_k$ then marginalisation of z returns the model

As a graphical model:



<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 25/79

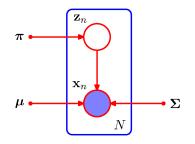
GMM with a latent variable



It is now easier to sample:

- 1. take a sample for z (using a uniform number generator)
- 2. take a sample for $p(\mathbf{x}|\mathbf{z})$. This is now a single Gaussian so use e.g. numpy.random.multivariate_normal

GMM with a latent variable



It is now easier to sample:

- 1. take a sample for z (using a uniform number generator)
- 2. take a sample for $p(\mathbf{x}|\mathbf{z})$. This is now a single Gaussian so use

e.g. numpy.random.multivariate_normal

Example: K = 3, and $\pi = (0.4, 0.5, 0.1)$ sample a uniform random variable. Say u = 0.945. This falls in class 3, so $\mathbf{z} = (0, 0, 1)$ Now generate sample from $p(\mathbf{x}|z_3 = 1) = N(\mathbf{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$

Fitting the GMM with EM

- As with K-means:
 - finding the expected values of the z_{nk} is possible, given all the parameters

▲□▶ ▲□▶ ▲≧▶ ▲≧▶ ≧ ∽�� 27/79

• if z_{nk} are fixed, it is possible to find the best π, μ, Σ

This results in an alternating algorithm similar to K-means, known as *Expectation Maximization*

Implementation (almost a repeat of a previous lecture)

- 1. Initialize $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k$
- E-step: Evaluate responsibilities for every data point x_i using current parameters π_k, μ_k, Σ_k:

$$\mathbb{E}(z_{ik}) = r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

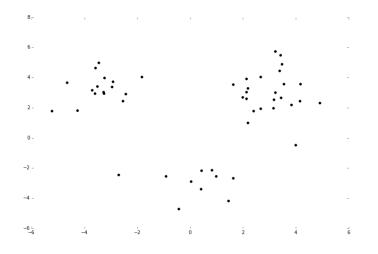
3. *M-step:* Re-estimate parameters π_k, μ_k, Σ_k using the current responsibilities r_{ik} (from E-step):

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N} r_{ik} \boldsymbol{x}_{i}$$
$$\boldsymbol{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N} r_{ik} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})^{T}$$
$$\pi_{k} = \frac{N_{k}}{N}$$

where $N_k = \sum_{i=1}^N r_{ik}$

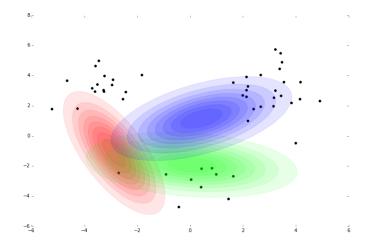
◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ ○ ○ 28/79

EM demo data

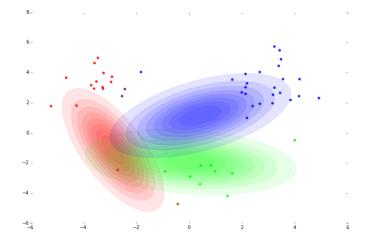


< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

EM demo initialization

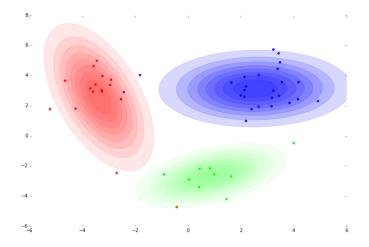


EM demo E Step



<ロト < 母ト < 目ト < 目ト 目 のへで 31/79

EM demo *M Step*



< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 32/79

EM demo

Video 1:

https://www.youtube.com/watch?v=TLg-fvTfqno

- Video 2: https://www.youtube.com/watch?v=uUtpiK5NEAM
- Code:

https://github.com/hughsalimbeni/variational_ inference_demos

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 33/79

Shortcomings of EM GMM

- Sensitive to initialization
- Gives no indication of uncertainty in parameter values
- No easy way of determining the number of clusters
- Can fail due to problematic singularities (if a cluster has fewer points than dimensions the covariance is singular)

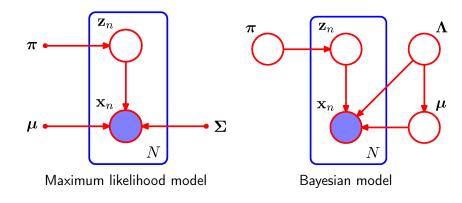
Shortcomings of EM GMM

- Sensitive to initialization
- Gives no indication of uncertainty in parameter values
- No easy way of determining the number of clusters
- Can fail due to problematic singularities (if a cluster has fewer points than dimensions the covariance is singular)
- The Bayesian approach:
 - Less sensitive to initialization
 - Provides a *distribution* over parameter values, rather than a point estimate ¹
 - Provides the model evidence for comparison with other models
 - Gives a principled way to determine the number of clusters

Bayesian Gaussian Mixture

 We want the means, covariances and mixture probabilities to be random variables

As a graphical model



< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ 36/79

From Bishop PRML 06

Bayesian Gaussian Mixture

 We want the means, covariances and mixture probabilities to be random variables

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < 37/79

Bayesian Gaussian Mixture

- We want the means, covariances and mixture probabilities to be random variables
- For the mean μ and covariance Σ, the natural (conjugate) choice is a Normal/Wishart:
- ▶ We specify the general shape W₀, a constant that determines the variability of samples v₀, a center m₀ and a constant b₀ to specify how far the mean should be from m₀ on average.
- $\blacktriangleright p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\boldsymbol{\mu} | \mathbf{m}_0, (\beta_0 \boldsymbol{\Sigma}^{-1})^{-1}) \mathcal{W}(\boldsymbol{\Sigma}^{-1} | \mathbf{W}_0, \nu_0)$
- We specify a (flat) Dirichlet prior for the mixture probabilities

(ロト (日) (三) (三) (三) (三) (37/79)

Visualizing the Normal/Wishart prior

Video 1:

https://www.youtube.com/watch?v=-9pyLOWXCsE& feature=youtu.be

Video 2:

https://www.youtube.com/watch?v=U0_R8-BaJAU&
feature=youtu.be

Code:

https://github.com/hughsalimbeni/variational_ inference_demos

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 38/79

Bayesian GMM

While the likelihood is the same as before:

$$p(\mathbf{x}_n|\mathbf{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k)$$

or

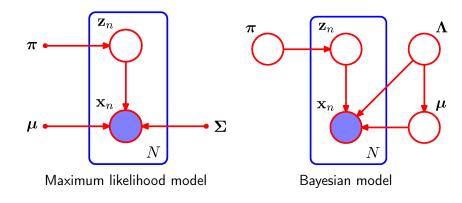
$$p(\mathbf{x}_n|\mathbf{Z}, \boldsymbol{\mu}, \mathbf{\Sigma}) = \prod_{k=1}^K N(\mathbf{x}_n|\boldsymbol{\mu}_k, \mathbf{\Sigma}_k)^{z_{nk}}, \qquad z_{nk} \in \{0, 1\}$$

we now have a rather more complicated joint distribution:

 $p(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = p(\boldsymbol{X} | \boldsymbol{Z}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{Z} | \boldsymbol{\pi}) p(\boldsymbol{\pi}) p(\boldsymbol{\mu} | \boldsymbol{\Sigma}) p(\boldsymbol{\Sigma})$

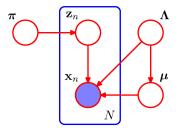
From here we work with $\mathbf{\Lambda} = \mathbf{\Sigma}^{-1}$

As a graphical model



From Bishop PRML 06

Bayesian GMM inference



We need to integrate out all the unobserved variables:

$$p(\mathbf{X}) = \iiint p(\mathbf{X}|\mathbf{Z},\mu,\mathbf{\Lambda})p(\mathbf{Z}|\pi)p(\pi)p(\mu|\mathbf{\Lambda})p(\mathbf{\Lambda})d\mathbf{Z}d\mu d\mathbf{\Lambda}d\pi$$

As the unobserved variables are tangled up in the integrand, unfortunately such integration is analytically intractable.

Variational GMM

Video 1:

https://youtu.be/j1LmIB8EoNA

Video 2:

https://youtu.be/Fq-oTp2Kpzo

Code:

https://github.com/hughsalimbeni/variational_
inference_demos

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 42/79

Why we need Bayesian models

- Point estimates can be misleading, and give no indication of uncertainty
- Bayesian methods are much more robust, especially with small data sets
- Bayesian methods incorporate prior beliefs in a principled way

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 43/79

What stops us using Bayesian models?

Typically intractable in all but the most simple cases

Why we need Bayesian models

- Point estimates can be misleading, and give no indication of uncertainty
- Bayesian methods are much more robust, especially with small data sets
- Bayesian methods incorporate prior beliefs in a principled way

・ロト ・ 日 ・ ・ 王 ・ 王 ・ シーマー・ 43/79

What stops us using Bayesian models?

- Typically intractable in all but the most simple cases
- That's is.

Why we need Bayesian models

- Point estimates can be misleading, and give no indication of uncertainty
- Bayesian methods are much more robust, especially with small data sets
- Bayesian methods incorporate prior beliefs in a principled way

What stops us using Bayesian models?

- Typically intractable in all but the most simple cases
- That's is.

Variational inference is one way of making complex Bayesian models tractable

Motivation Derivation Application

Problem

We have:

- A generative model: p(X|Z) and p(Z)
- A task:
 - find the model evidence:

$$p(\mathbf{X}) = \int p(\mathbf{X}|\mathbf{Z}) p(\mathbf{Z}) d\mathbf{Z}$$

find the posterior over the latent variables:

$$p(\mathbf{Z}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{Z}) \quad p(\mathbf{Z})}{p(\mathbf{X})}$$

We assume:

Exact inference requires intractable integration

We want:

- To perform exact inference tractably...

1. Approximate the exact model with finitely many samples (Lecture 16)

- 1. Approximate the exact model with finitely many samples (Lecture 16)
 - pros:
 - Asymptotically correct
 - cons:
 - Only finite time available
 - Usually scales poorly with dimension
 - Difficult to determine the quality of approximation

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 46/79

Often requires fine tuning to get good results

- 1. Approximate the exact model with finitely many samples (Lecture 16)
 - pros:
 - Asymptotically correct
 - cons:
 - Only finite time available
 - Usually scales poorly with dimension
 - Difficult to determine the quality of approximation
 - Often requires fine tuning to get good results
- 2. Use a simpler surrogate model, which is as close as possible to the true model

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 46/79

- 1. Approximate the exact model with finitely many samples (Lecture 16)
 - pros:
 - Asymptotically correct
 - cons:
 - Only finite time available
 - Usually scales poorly with dimension
 - Difficult to determine the quality of approximation
 - Often requires fine tuning to get good results
- 2. Use a simpler surrogate model, which is as close as possible to the true model
 - pros:
 - Can be fast and scalable to high dimension
 - Deterministic (i.e. running the algorithm twice produces the same answer)
 - cons:
 - Not the true model
 - Approximation might lose important dependencies
 - ► May still result in intractable integrals <□ト <⑦ト < ミト < ミト < ミト ミー シへへ 46/79

In summary

Broadly:

 Sampling methods: Stochastic approximate inference for the exact model

 Variational methods: Exact deterministic inference for an approximate model

The good news: the 'approximate model' can be guaranteed to be the *best possible* approximation, for a given approximating family

In general:

- High-dimensional integration is very hard
- Optimization can be easier

Notation

p	probabilities relating to the exact model
q	probabilities relating to the surrogate model
Z	latent (unobserved) variables
x	observed variables
$\mathbb{E}f(X)$	$=\int f(\mathbf{X})p(\mathbf{X})d\mathbf{X}$, assuming the distribution of \mathbf{X} is obvious
$\mathbb{E}_{q(Z)}f(X,Z)$	$=\int f(\mathbf{X}, \mathbf{Z})q(\mathbf{Z})d\mathbf{Z}$, if we need to be careful which distribution we take the expectation over
$\mathcal{L}(\mathbf{X})$	$\log p(\mathbf{X}) = \log \int p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} \text{ the } \log \text{ marginal likelihood}$

Before we start...

- Easy to work with:
 - ► p(X|Z). This is just the probability of the data, given the latent variables. If the latent variables are given things are easy
 - anything involving q, by design
- Tricky to work with:
 - p(Z), since the true distribution over the unobserved variables is assumed intractable
- Very hard to calculate:

$$p(\mathbf{X}) = \int p(\mathbf{X}|\mathbf{Z}) p(\mathbf{Z}) d\mathbf{Z}$$

$$p(\mathbf{Z}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{Z}) p(\mathbf{Z})}{p(\mathbf{X})}$$

Some important things to remember:

- $KL(a(x)||b(x)) = \mathbb{E}_{a(x)} \log \frac{a(x)}{b(x)} dx$
- ► $KL(a(x)||b(x)) = -\mathbb{E}_{a(x)}\log b(x) + H(a)$, H(.) is the entropy
- ► $KL(a(x)||b(x)) \ge 0$, with equality iff $a \sim b$, we have a > b.

► It can be shown that² that:

$$\mathcal{L}(\mathbf{X}) = \mathbb{E}_{q(\mathbf{Z})} \log \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} + \mathbb{E}_{q(\mathbf{Z})} \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X})}$$

 $^{^{2}}$ i.e. you will show it in the tutorial

► It can be shown that² that: $\mathcal{L}(\mathbf{X}) = \mathbb{E}_{q(\mathbf{Z})} \log \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} + \mathbb{E}_{q(\mathbf{Z})} \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X})}$

► The second term is $-KL(q(\mathbf{Z}) || p(\mathbf{Z} | \mathbf{X}))$

◆□▶ ◆□▶ ◆ E▶ ◆ E ● ○ < 50/79</p>

²i.e. you will show it in the tutorial

► It can be shown that² that: $\mathcal{L}(\mathbf{X}) = \mathbb{E}_{q(\mathbf{Z})} \log \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} + \mathbb{E}_{q(\mathbf{Z})} \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X})}$

• The second term is $-KL(q(\mathbf{Z}) || p(\mathbf{Z}|\mathbf{X})) \leq 0$

・ ・ ・ ● ト ・ = ト ・ = ・ つへで 50/79

²i.e. you will show it in the tutorial

► It can be shown that² that: $\mathcal{L}(\mathbf{X}) = \mathbb{E}_{q(\mathbf{Z})} \log \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} + \mathbb{E}_{q(\mathbf{Z})} \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X})}$

• The second term is $-KL(q(\mathbf{Z}) || p(\mathbf{Z}|\mathbf{X})) \leq 0$

We can choose q to make this KL term as close to zero as possible. This is the same as making q(Z) as close as possible to p(Z|X).

・ ・ ・ ● ト ・ = ト ・ = ・ つへで 50/79

²i.e. you will show it in the tutorial

► It can be shown that² that: $\mathcal{L}(\mathbf{X}) = \mathbb{E}_{q(\mathbf{Z})} \log \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} + \mathbb{E}_{q(\mathbf{Z})} \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X})}$

• The second term is $-KL(|\mathbf{q}(\mathbf{Z})|||\mathbf{p}(\mathbf{Z}|\mathbf{X})|) \leq 0$

- We can choose q to make this KL term as close to zero as possible. This is the same as making q(Z) as close as possible to p(Z|X).
- The other term is called the Evidence Lower BOund (ELBO). Minimizing the KL term is the same as maximizing the ELBO

²i.e. you will show it in the tutorial

► It can be shown that² that: $\mathcal{L}(\mathbf{X}) = \mathbb{E}_{q(\mathbf{Z})} \log \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} + \mathbb{E}_{q(\mathbf{Z})} \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X})}$

• The second term is $-KL(|\mathbf{q}(\mathbf{Z})|||\mathbf{p}(\mathbf{Z}|\mathbf{X})|) \leq 0$

- We can choose q to make this KL term as close to zero as possible. This is the same as making q(Z) as close as possible to p(Z|X).
- The other term is called the Evidence Lower BOund (ELBO). Minimizing the KL term is the same as maximizing the ELBO

Therefore:

(max ELBO wrt q) \iff (q(Z) is as close as possible to p(Z|X))

²i.e. you will show it in the tutorial

Disclaimer

We have been sloppy with notation

q(Z) depends on X, so it should be written q(Z|X). We are never interested in e.g. q(X|Z), however, so it is safe to drop the dependency

$$\blacktriangleright \mathcal{L}(\mathsf{X}) = \log \mathbb{E}_{q(\mathsf{Z})} \frac{p(\mathsf{X}|\mathsf{Z})p(\mathsf{Z})}{q(\mathsf{Z})}$$

 $^{3}f(\mathbb{E}[\mathbf{Z}]) \geq \mathbb{E}[f(\mathbf{Z})]$ if f is concave. The logarithm is concave \mathbb{E} , \mathbb{E} . Solve $_{52/79}$

$$\blacktriangleright \mathcal{L}(\mathsf{X}) = \log \mathbb{E}_{q(\mathsf{Z})} \frac{p(\mathsf{X}|\mathsf{Z})p(\mathsf{Z})}{q(\mathsf{Z})}$$

• Recall importance sampling: $\exp \mathcal{L}(\mathbf{X}) \approx \frac{1}{S} \sum \frac{p(\mathbf{X}|\mathbf{Z}^{(s)})p(\mathbf{Z}^{(s)})}{q(\mathbf{Z}^{(s)})}$, where $\mathbf{Z}^{(s)} \sim q$ and S is the number of samples

 $^{3}f(\mathbb{E}[\mathbf{Z}]) \geq \mathbb{E}[f(\mathbf{Z})]$ if f is concave. The logarithm is concave \mathbb{E}^{*} \mathbb{E}^{*} . Solve $_{52/79}$

$$\blacktriangleright \mathcal{L}(\mathsf{X}) = \log \mathbb{E}_{q(\mathsf{Z})} \frac{p(\mathsf{X}|\mathsf{Z})p(\mathsf{Z})}{q(\mathsf{Z})}$$

► Recall importance sampling: $\exp \mathcal{L}(\mathbf{X}) \approx \frac{1}{S} \sum \frac{p(\mathbf{X}|\mathbf{Z}^{(s)})p(\mathbf{Z}^{(s)})}{q(\mathbf{Z}^{(s)})}$, where $\mathbf{Z}^{(s)} \sim q$ and S is the number of samples

► Instead of sampling, use Jensen's inequality³. We have: $\mathcal{L}(\mathbf{X}) = \log \mathbb{E}_{q(\mathbf{Z})} \frac{p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}{q(\mathbf{Z})}$ $\geq \mathbb{E}_{q(\mathbf{Z})} \log \left(\frac{p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}{q(\mathbf{Z})}\right) = \mathsf{ELBO}$

 $^{3}f(\mathbb{E}[\mathbf{Z}]) \geq \mathbb{E}[f(\mathbf{Z})]$ if f is concave. The logarithm is concave \mathbb{E} , $\mathbb{E}_{52/79}$

A closer look at the ELBO

We can write the ELBO in a few different ways

$$ELBO = \mathbb{E}_{q(Z)} \log \frac{p(X|Z)p(Z)}{q(Z)}$$

= $\mathbb{E}_{q(Z)} \log p(X|Z) + \mathbb{E}_{q(Z)} \log \frac{p(Z)}{q(Z)}$
= $\mathbb{E}_{q(Z)} \log p(X|Z) - KL(q(Z)||p(Z))$
= reconstructed loglikelihood - a KL penalty (regularizer) term

reconstructed loglikelihood - a KL penalty (regularizer) term =

$$\begin{aligned} \mathsf{ELBO} &= & \mathbb{E}_{q(\mathsf{Z})} \log \frac{p(\mathsf{X}|\mathsf{Z})p(\mathsf{Z})}{q(\mathsf{Z})} \\ &= & \mathbb{E}_{q(\mathsf{Z})} \log p(\mathsf{X}|\mathsf{Z}) + \mathbb{E}_{q(\mathsf{Z})} \log p(\mathsf{Z}) + H(q) \end{aligned}$$

How to find q?

Clearly the best q(Z) would just be p(Z|X), but that defeats the point...

There are two specific approaches

- Mean field: we assume *q* factorizes
- Parametric family: we assume q belongs to some tractable family

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 54/79

Today we will cover only the mean field approach

Mean field important result

► If $q(\mathbf{Z}) = \prod_{i} q_i(Z_i) = q_1(Z_1)q_2(Z_2)...q_M(Z_M)$

▲□▶ ▲ @ ▶ ▲ 월 ▶ ▲ 월 · 의 의 약 55/79

Mean field important result

• If $q(\mathbf{Z}) = \prod_{i} q_i(Z_i) = q_1(Z_1)q_2(Z_2)...q_M(Z_M)$

The optimal factors are given by:

$$q_i^* \propto \exp\left(\mathbb{E}_{j \neq i} \log p(\mathsf{X}, \mathsf{Z})\right)$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ ● ● ● ● 55/79

Mean field approximation

- We assume that $q(\mathbf{Z}) = \prod_i q_i(Z_i) = q_1(Z_1)q_2(Z_2)...q_M(Z_M)$. Call each factor q_i for convenience
- So we have $ELBO = \mathbb{E}_{q(\mathbf{Z})} p(\mathbf{X}, \mathbf{Z}) - \mathbb{E}_{q(\mathbf{Z})} q(\mathbf{Z})$ $= \int q_1 q_2 \dots q_M \log p(\mathbf{X}, Z) dZ_1 dZ_2 \dots dZ_M$ $- \int q_1 q_2 \dots q_M \log(q_1 q_2 \dots q_M) dZ_1 dZ_2 \dots dZ_M$
- ► Using the functional derivative ⁴ we have ⁵ $\frac{\delta}{\delta q_1}$ ELBO = $\int q_2...q_M \log p(\mathbf{X}, \mathbf{Z}) dZ_2...dZ_M \log q_1 + \text{const.}$
- ▶ Let q_1^* be the optimal q_1 that maximizes the ELBO. Then q_1^* satisfies $\frac{\delta}{\delta q_1}$ ELBO = 0
- ► This gives $q_1^* \propto \exp\left(\mathbb{E}_{q_2q_3...q_M}\log p(\mathsf{X},\mathsf{Z})\right)$
- ▶ Similarly $q_i^* \propto \exp(\mathbb{E}_{j \neq i} \log p(\mathbf{X}, \mathbf{Z}))$, where $\mathbb{E}_{j \neq i}$ means the expectation over all the q_j with $j \neq i$

⁴i.e. $\frac{\delta q(z)}{\delta q(z')} = \delta(z - z')$ ⁵this will be an exercise

Mean field summary

The optimal factors are given by:

$$q_i^* \propto \exp\left(\mathbb{E}_{j \neq i} \log p(\mathbf{X}, Z)\right)$$

- Note we have made no assumption about the form of the q_i, beyond the factorization. This is sometimes called 'free form' optimization for this reason.
- ► We could find the normalization constant by integrating over Z_i, but in practice we will spot it by inspection

Motivation Derivation Application

Mean field example 1: 2D Gaussian

Consider a 2D Gaussian:
$$\mathbf{z} \sim N\left(\begin{pmatrix}z_1\\z_2\end{pmatrix} \middle| \begin{pmatrix}\mu_1\\\mu_2\end{pmatrix}, \begin{pmatrix}\Lambda_{11} & \Lambda_{12}\\\Lambda_{21} & \Lambda_{22}\end{pmatrix}^{-1}\right)$$

- We assume the variational distribution factorises as q(z) = q₁(z₁)q₂(z₂). Notice that full distribution doesn't unless Λ₂₁ = Λ₁₂ = 0
- ▶ We know the optimal factor log $q_1^*(z_1) = \mathbb{E}_{q_2(z_2)} \log p(\mathbf{z}) + \text{const.}$
- Note that this is function of z₁, so we only need consider terms depending on z₁
- ► For the multivariate normal, the logpdf is just a quadratic form in z₁ (and z₂).
- > The details of the derivation are left for the tutorial

Mean field example 1: 2D Gaussian continued

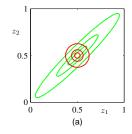


Figure: From PRML (Bishop, 2006)

The final result is:

$$q_1^*(z_1) = N(z_1|\mu_1, \Lambda_{11}^{-1})$$

and similarly for q_2^*

Note that we did not specify that the factors should be Gaussian. The Gaussian is the optimal solution over all possible functions, given the factorisation we started with

C 60/79

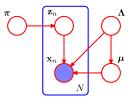
2D Gaussian demo

Video: https://www.youtube.com/watch?v=aGtWphP2W_Q

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ ≧ り < ○ 61/79

Variational Inference for Bayesian GMM

Recall the graphical model:



Or in symbols:

$$p(\boldsymbol{X},\boldsymbol{\mathsf{Z}},\boldsymbol{\mu},\boldsymbol{\Lambda},\pi)=p(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{\mu},\boldsymbol{\Lambda})p(\boldsymbol{Z}|\pi)p(\pi)p(\boldsymbol{\mu}|\boldsymbol{\Lambda})p(\boldsymbol{\Lambda})$$

We choose the form of the variational posterior to be as rich as possible:

$$q(\mathsf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}, \pi) = q(\boldsymbol{Z})q(\pi, \boldsymbol{\mu}, \boldsymbol{\Lambda})$$

 All we need is two expectations:

$$q^{*}\left(\mathsf{Z}
ight)=\exp\mathbb{E}_{oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}}\left(\log p\left(\mathsf{X},\mathsf{Z},oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}
ight)
ight)$$

 and

$$q^{*}\left(oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}
ight) =\exp\mathbb{E}_{\mathsf{Z}}\left(\log p\left(\mathsf{X},\mathsf{Z},oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}
ight)
ight)$$

The log joint

Recall the full joint:

$$p(\mathsf{X},\mathsf{Z},\mu,\mathsf{\Lambda},\pi) = p(\mathsf{X}|\mathsf{Z},\mu,\mathsf{\Lambda})p(\mathsf{Z}|\pi)p(\pi)p(\mu|\mathsf{\Lambda})p(\mathsf{\Lambda})$$

Separating out the terms we have:

$$\log p(\mathbf{X}, \mathbf{Z}, \pi, \mu, \mathbf{\Lambda}) = \sum_{k=1}^{K} \left[\log \prod_{n} p(\mathbf{x}_{n} | z_{nk}, \mu_{k}, \Sigma_{k}) + \log \prod_{n} p(z_{nk} | \pi_{k}) + \log p(\pi_{k}) + \log p(\pi_{k}) + \log p(\mu_{k} | \mathbf{\Lambda}_{k}) + \log p(\mathbf{\Lambda}_{k}) \right]$$

The log joint

Recall the full joint:

$$p(X, Z, \mu, \Lambda, \pi) = p(X|Z, \mu, \Lambda)p(Z|\pi)p(\pi)p(\mu|\Lambda)p(\Lambda)$$

Separating out the terms we have:

$$\log p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = \sum_{k=1}^{K} \left[\log \prod_{n} p(\mathbf{x}_{n} | \boldsymbol{z}_{nk}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) + \log \prod_{n} p(\boldsymbol{z}_{nk} | \boldsymbol{\pi}_{k}) + \log p(\boldsymbol{\pi}_{k}) + \log p(\boldsymbol{\pi}_{k}) + \log p(\boldsymbol{\mu}_{k} | \boldsymbol{\Lambda}_{k}) + \log p(\boldsymbol{\Lambda}_{k}) \right]$$

 $\log p(\mathbf{X}, \mathbf{Z}, \pi, \mu, \mathbf{\Lambda}) = \sum_{k=1}^{n} \left[$ $\log \prod \mathcal{N} \big(\mathsf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k^{-1} \big)^{z_k} +$ $\log \prod \pi_k^{z_{nk}} +$ $\log \mathcal{D}(\boldsymbol{\pi}|\alpha_0) +$ $\log \mathcal{N}\left(oldsymbol{\mu}_k | \mathbf{m}_0, (eta_0 \mathbf{\Lambda}_k)^{-1}
ight) +$ $\log \mathcal{W}(\mathbf{\Lambda}_k | \mathbf{W}_0, v_0)$ < □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q @ 64/79 In full glory...

$$\log p(\mathbf{X}, \mathbf{Z}, \pi, \mu, \mathbf{\Lambda}) = \sum_{k=1}^{K} \left[\sum_{n=1}^{N} z^{nk} \left(-\frac{1}{2} \log |\mathbf{\Lambda}_{k}| - \frac{1}{2} (\mathbf{x}_{n} - \mu_{k})^{T} \mathbf{\Lambda}_{k} (\mathbf{x}_{n} - \mu_{k}) \right) + \sum_{n=1}^{N} z^{nk} \log \pi_{k} + \left(\alpha_{0} - 1 \right) \log \pi_{k} + -\frac{1}{2} \log |\beta_{0} \mathbf{\Lambda}_{k}| - \frac{1}{2} (\mu_{k} - \mathbf{m}_{0})^{T} (\beta_{0} \mathbf{\Lambda}_{k}) (\mu_{k} - \mathbf{m}_{0}) + \left(\frac{\nu_{0} - D - 1}{2} \right) \log |\mathbf{\Lambda}_{k}| - \frac{1}{2} tr \left(\mathbf{W}_{0}^{-1} \mathbf{\Lambda}_{k} \right) \right]$$

To compute

$$\log q^{st}\left(\mathsf{Z}
ight)=\mathbb{E}_{oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}}\left(\log p\left(\mathsf{X},\mathsf{Z},oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}
ight)
ight)$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ ≧ り < ○ 66/79

we need only consider terms that depend on z_{nk}

For Z, terms needed:

$$\log p(\mathsf{X},\mathsf{Z},\pi,\mu,\mathsf{\Lambda}) = \sum_{k=1}^{K} \Big[$$

$$\sum_{n=1}^{N} z^{nk} \left(-\frac{1}{2} \log |\mathbf{\Lambda}_k| - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \mathbf{\Lambda}_k (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) +$$

$$\sum_{n=1}^N z^{nk} \log \pi_k +$$

$$\begin{aligned} & \left(\alpha_{0}-1\right)\log\boldsymbol{\pi}_{k}+\\ & -\frac{1}{2}\log\left|\beta_{0}\boldsymbol{\Lambda}_{k}\right|-\frac{1}{2}(\boldsymbol{\mu}_{k}-\boldsymbol{m}_{0})^{T}\left(\beta_{0}\boldsymbol{\Lambda}_{k}\right)\left(\boldsymbol{\mu}_{k}-\boldsymbol{m}_{0}\right)+\\ & \left(\frac{\nu_{0}-D-1}{2}\right)\log\left|\boldsymbol{\Lambda}_{k}\right|-\frac{1}{2}tr\left(\boldsymbol{\mathsf{W}}_{0}^{-1}\boldsymbol{\Lambda}_{k}\right)\right] \end{aligned}$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで 67/79

Finding $q^*(Z)$

So we have $\log q^*(\mathbf{Z}) = \sum_{nk}$

$$\mathbb{E}_{\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Lambda}}\left(z_{nk}\left(-\frac{1}{2}\log|\boldsymbol{\Lambda}|-\frac{1}{2}(\mathbf{x}_n-\boldsymbol{\mu}_k)^{T}\boldsymbol{\Lambda}_k\left(\mathbf{x}_n-\boldsymbol{\mu}_k\right)\right)+z_{nk}\log\boldsymbol{\pi}_k\right)+\mathrm{cst}$$

+ constant terms.

Since the expectation is not over z_{nk} we can take the z_{nk} out

$$\log q^*(\mathbf{Z}) = \sum_{nk} z_{nk} \log \rho_{nk}$$

where

$$\log \rho_{nk} = \mathbb{E}_{\pi,\mu,\Lambda} \left(-\frac{1}{2} \log |\Lambda| - \frac{1}{2} (\mathsf{x}_n - \mu_k)^T \Lambda_k (\mathsf{x}_n - \mu_k) + \log \pi_k \right)$$

While ρ doesn't look promising, this is actually a nice answer for Z.

The final result for $q^*(Z)$

Taking exponentials we have:

$$q^*(\mathsf{Z}) \propto \prod_n \prod_k \rho_{nk} z_{nk}$$

Which is just

$$q^{*}\left(\mathsf{Z}\right)=\prod_{n}\prod_{k}r_{nk}^{z_{nk}}$$

where r_{nk} is the normalized version of ρ_{nk} , i.e. another categorical random variable with updated probabilities.

- We now know $\mathbb{E}(z_{nk}) = r_{nk}$
- Note that we can't calculate the expectations until we know the variational posteriors of the other variables.

Next we consider the second expectation:

$$q^{st}\left(oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}
ight) = \exp \mathbb{E}_{\mathsf{Z}}\left(\log p\left(\mathsf{X},\mathsf{Z},oldsymbol{\pi},oldsymbol{\mu},oldsymbol{\Lambda}
ight)
ight)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 70/79

Since Z d-separates π from all the other nodes we have $q(\pi, \mu, \Lambda) = q(\pi) q(\mu, \Lambda)$

Note that we didn't have to assume this. It fell out naturally.

For π , terms needed:

$$\log p(\mathbf{X}, \mathbf{Z}, \pi, \mu, \mathbf{\Lambda}) = \sum_{k=1}^{K} \left[\sum_{n=1}^{N} z^{nk} \left(-\frac{1}{2} \log |\mathbf{\Lambda}_{k}| - \frac{1}{2} (\mathbf{x}_{n} - \mu_{k})^{T} \mathbf{\Lambda}_{k} (\mathbf{x}_{n} - \mu_{k}) \right) \right]$$
$$\sum_{n=1}^{N} z^{nk} \log \pi_{k} + \frac{1}{2} \log |\beta_{0} \mathbf{\Lambda}_{k}| - \frac{1}{2} (\mu_{k} - m_{0})^{T} (\beta_{0} \mathbf{\Lambda}_{k}) (\mu_{k} - m_{0}) + \left(\frac{\nu_{0} - D - 1}{2} \right) \log |\mathbf{\Lambda}_{k}| - \frac{1}{2} tr (\mathbf{W}_{0}^{-1} \mathbf{\Lambda}_{k}) \right]$$

Note these terms do not depend on μ_k or Λ_k , so we have $q(\pi, \mu, \Lambda) = q(\pi) q(\mu, \Lambda)$

Terms involving π

So we have have:

$$\log q^*(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = \mathbb{E}_{\mathbf{Z}} \left[\sum_{k=1}^{K} \sum_{n=1}^{N} z^{nk} \log \boldsymbol{\pi}_k + (\alpha_0 - 1) \log \boldsymbol{\pi}_k \right]$$

+terms not containing π

So

$$\log q^*(\pi) = \mathbb{E}_Z \sum_{k=1}^K \sum_{n=1}^N z^{nk} \log \pi_k + (\alpha_0 - 1) \log \pi_k + const$$

Since we know $\mathbb{E}(z_{nk}) = r_{nk}$ we have

$$\log q^*(\boldsymbol{\pi}) = \sum_{k=1}^{K} \sum_{n=1}^{N} r^{nk} \log \boldsymbol{\pi}_k + (\alpha_0 - 1) \log \boldsymbol{\pi}_k + const$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ ≧ り < ○ 72/79

Result for $q^*(\pi)$

Rearranging we have:

$$\log q^*(\boldsymbol{\pi}) = \sum_k \left(\sum_{n=1}^N r^{nk} + \alpha_0 - 1\right) \log \boldsymbol{\pi}_k + const$$

This is exactly the form of another Dirichlet distribution:

$$q^{*}(\boldsymbol{\pi}) = \mathcal{D}\left(\boldsymbol{\pi}|\alpha_{0} + \sum_{n=1}^{N} r^{nk}\right)$$

Now we can compute log $q^*(\mu, \Lambda)$ by looking at all the terms that contain μ_k or Λ_k .

It turns out that this is just another Normal/Wishart, but we won't do the details as they are ugly but straightforward (we just need to keep using $\mathbb{E}(z_{nk}) = r_{nk}$ and do some heavy duty completing the square)

To conclude

The important point is that all the posteriors can be found analytically, but they all depend on ρ_{nk} , which was defined as

$$\log \rho_{nk} = \mathbb{E}_{\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Lambda}} \left(-\frac{1}{2} \log |\boldsymbol{\Lambda}| - \frac{1}{2} (\boldsymbol{\mathsf{x}}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Lambda}_k \left(\boldsymbol{\mathsf{x}}_n - \boldsymbol{\mu}_k \right) + \log \boldsymbol{\pi}_k \right)$$

Now we have the variational posteriors over π, μ, Λ we can compute these terms analytically.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ♡ < ♡ 75/79

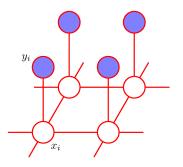
We have to proceed iteratively:

- $q^*(\pi)$ and $q^*(\mu, \Lambda)$ depend on $q(\mathsf{Z})$
- $q^*(\mathsf{Z})$ depends on $q(\pi)$ and $q(\mu, \Lambda)$

Questions?

< □ > < □ > < □ > < Ξ > < Ξ > Ξ → ♡ < ♡ 76/79

Ising Model



from Bishop PRML 2006

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\left(\sum_{i} \sum_{j \in \mathsf{nbr}_i} x_i x_j + \sigma \sum_{i} x_i y_i\right)$$

Where $x_i, y_i \in \{-1, 1\}$ and σ is some constant Finding $p(\mathbf{x}|\mathbf{y})$ requires a sum over 2^N states

Ising Model 2

- Use a variational posterior $q(\mathbf{x}) = \prod_i q(x_i)$
- ► For a fully factorized variational posterior we have

$$q_i(x_i) \propto \exp \mathbb{E}_{j \neq i} \left(x_i \sum_{j \in \mathsf{nbr}_i} x_j + \sigma y_i x_i
ight)$$

dropping all terms that do not depend on x_i

It follows that

$$q_i(x_i) \propto \exp\left(x_i \sum_{j \in \mathsf{nbr}_i} \mu_j + \sigma y_i x_i
ight)$$

Where $\mu_j = \mathbb{E}(q_j)$

- *q_i* depends only on its neighbours
- ► Closed form updates can be found for μ_i

Ising Model Demo

