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Training the Distributed GP

» Split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)

v

Distributed optimization and training straightforward

» Computational complexity: O(MP?) [instead of O(N?)]
But distributed over many machines

» Memory footprint: O(MP? + ND) [instead of O(N? + ND)]
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Empirical Training Time
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Training data set size
» NLML is proportional to training time

» Full GP (16K training points) ~ sparse GP (50K training points)
~ distributed GP (16M training points)

» Push practical limit by order(s) of magnitude
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Practical Training Times

» Training* with N = 10%, D = 1 on a laptop: ~ 30 min

» Training* with N = 5 x 10°, D = 8 on a workstation: ~ 4 hours

*'  Maximize the marginal likelihood, stop when converged**

**: Convergence often after 30-80 line searches***

***: Line search ~ 2-3 evaluations of marginal likelihood and
its gradient (usually O(N?))
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Predictions with the Distributed GP

H1,01  H2,02  [3,03

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?

» Product-of-GP-experts
» PoE (product of experts) M (Ng & Deisenroth, 2014)
» gPoE (generalized product of experts) » (Cao & Fleet, 2014)
» BCM (Bayesian Committee Machine) M (Tresp, 2000)
» rBCM (robust BCM) » (Deisenroth & Ng, 2015)
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Objectives

o

.%m

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Runs on heterogeneous computing infrastructures (laptop,
cluster, ...)

v

Reasonable predictive variances
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Running Example

Full GP

-5 0 5 10 15

» Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions
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Product of GP Experts

» Prediction model (independent predictors):

GP expert

M o—_——
p(f«lxs, D) = HPk(f*|x*,D(k)),
k=1

Pr(felee, DY) = N (fi | (), 07 (x4))

» Predictive precision (inverse variance) and mean:

POe Ek O_k x*

yi"e = (Ugoe) Ek Oy z(x*).“k(x*)
» Independent of the computational graph v/
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Product of GP Experts

» Unreasonable variances for M > 1:

@) = 07 2(x)

» The more experts the more certain the prediction, even if every
expert itself is very uncertain X P Cannot fall back to the prior
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Generalized Product of GP Experts (Cao & Fleet, 2014)

v

Weight the responsiblity of each expert in PoE with By
» Prediction model (independent predictors):

M
p(felre, D) =[P (felxe, DO)
k=1

pk(f*‘x*/p(k)) = N(f* | (), U,%(x*))
» Predictive precision and mean:
( gPOe 2 ﬁkUk x*)
Vgpoe _ U*Poe Zk [BkU'k_z(x*) ]’lk(x*)

With }, Bx = 1, the model can fall back to the prior v/
“Log-opinion pool” model (Heskes, 1998)

v

» Independent of computational graph for g = 1/M v/
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Generalized Product of GP Experts (Cao & Fleet, 2014)

_ FullGP
. /7o gPoEas

» Same mean as PoE

» Model no longer overconfident and falls back to prior v/
» Very conservative variances X

Distributed Gaussian Processes
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Bayesian Committee Machine (Tresp, 2000)

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)
Prediction model (DY) 1L DW|f,):

) = T, pe(ful s, D)
pM(fe)

v

p(felxs, D
» Predictive precision and mean:
b —
cm) Zk L0 (xe) =(M = 1)o3 2

ylicm _ bcm Zk ) x* ;’lk x*)
Product of GP experts, divided by M — 1 times the prior

v

» Guaranteed to fall back to the prior outside data regime v/
» Independent of computational graph v/
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Bayesian Committee Machine

Full GP

» Variance estimates are about right v/
» When leaving the data regime, the BCM can produce junk X
» Robustify
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Robust Bayesian Committee Machine

» Merge gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

» Prediction model (conditional independence D) )| fe):

Hk 1Pk (f*\x*/ ®))
PZ"ﬂk Y(fe)

p(filxs, D) =
» Predictive precision and mean:

(@) 2 = S o) -0 S0 Bros2

rbem

PP = (0P Y Bro (%) pe ()
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Robust Bayesian Committee Machine
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» Does not break down in case of weak experts M Robustified v/
» Robust version of BCM M Reasonable predictions v/

» Independent of computational graph (for all choices of Bi) v/

Distributed Gaussian Processes
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Setting the Weighting By

» The gPoE and the rBCM have a B parameter that assigns
individual experts different weights when predicting:

M
p(fulre D) =TT, pl* (fel, D)

Bk
Ty pye (felxe, DO)
p(felxs, D) = : 1p2kk,8k—l(f*)

» Intuition: Set By (x.) such that “informed” GP experts get more

influence
» Use some distance/divergence between GP prior and GP
posterior at test point x,
» Some options for By:
» By o« KL(prior||posterior)
» By oc DiffEnt(prior, posterior)
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Splitting the Data

—_— . [

» Data sets should be of approximately the same size

» Random assignment of data points to experts

» Cluster inputs (e.g., k-means), assign clusters to experts
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Empirical Approximation Error (1)
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Simulated robot arm data (10K training, 10K test)
» Hyper-parameters of ground-truth full GP

v

» RMSE as a function of the training time
» Subset of data (SOD) performs worse than any distributed GP
» 'BCM performs best with “weak” GP experts
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Empirical Approximation Error (2)

#Points/Expert
2’39 156 625 2500

NLPD

Gradient time in sec

» NLPD as a function of the training time P Mean and variance
» BCM and PoE are not robust for weak experts
» gPoE suffers from too conservative variances

» rBCM consistently outperforms other methods
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Summary: Distributed Gaussian Processes

11,011 2,012 1,021 1133, 033

» Scale Gaussian processes to large data (beyond 10°)
» Model conceptually straightforward and easy to train

» Key: Distributed computation

v

Currently tested with N > 107

» Scales to arbitrarily large data sets (with enough computing

power)
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Scaling GPs using Inducing Inputs

Inducing function values @ Training function values f;
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» Introduce inducing function values f,
» “Hypothetical” function values

v

All function values are still jointly Gaussian distributed (e.g.,
training, test and inducing function values)

» Compress information into inducing function values

Selected references: [8-10, 5, 4, 12, 3]

v
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BCM: Derivation

DO 1| D) | fe

p(f+| DD, DO o p(DD, DO |£)p(f,)
P2 p(DO|fy) p(DW|f)p(fs)
_ p(DY, £) p(DW, £,)
B p(fs)

pr(f«|D®)p;(f| DY)
p(fx)
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