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Probabilistic Graphical Models

Three types of probabilistic graphical models
» Bayesian networks (directed graphical models)
» Markov random fields (undirected graphical models)

» Factor graphs

» Nodes: (Sets of) random variables
» Edges: Probabilistic/functional relations between variables

» Graph captures the way in which the joint distribution over all
random variables can be decomposed into a product of factors
depending only on a subset of these variables
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Why are they useful?

» Simple way to visualize the structure of a probabilistic model

v

Insights into properties of the model (e.g., conditional
independence) by inspection of the graph

» Can be used to design/motivate new models

» Complex computations for inference and learning can be
expressed in terms of graphical manipulations
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Importance of Visualization
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Bayesian Networks (Directed Graphical Models)
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Revision: Graphical Model for Linear Regression

From PRML (Bishop, 2006)

We are given a data set
(x1,Y1), ..., (xN,yN) Where

yi=f(xi) +e e~N(0,0?)

with f unknown.
» Find a (regression) model that
explains the data

» Consider polynomials f(x) = Z]]\i 0 wjxf with parameters

w = [wo,...,wm]" .

» Bayesian linear regression: Place a conjugate Gaussian prior on
the parameters: p(w) = N (0, a°I)

Graphical Models
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Revision: Graphical Model for Linear Regression

N pylx) = N(y| f(x), o%)
0 ° o\ O o M .
o, flx) =Y wid
; ° j=0
0 1 p(w) = N (0, a?I)

From PRML (Bishop, 2006)
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Conditional Independence

all blc < p(alb,c) = p(a
< p(a,blc) = p(a

)

le)p(ble)

» (Conditional) independence allows for a factorization of the joint
distribution M More efficient inference

» Conditional independence properties of the joint distribution can
be read directly from the graph

» No analytical manipulations required.
» d-separation (Pearl, 1988)
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D-Separation (Directed Graphs)

Directed, acyclic graph in which A, B, C
are arbitrary, non-intersecting sets of
nodes. Does A 1L B|C hold?

Note: C is observed if we condition on it
(and the nodes in the GM are shaded)

» Consider all possible paths from any node in A to any node in B.
Any such path is blocked if it includes a node such that either

» Arrows on the path meet either head-to-tail or tail-to-tail at the
node, and the node is in the set C or
» Arrows meet head-to-head at the node and neither the node nor

any of its descendants is in the set C
If all paths are blocked, then A is d-separated from B by C, and the
joint distribution satisfies A 1L B|C.
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Example

(@) a L b|c? (b) a 1L b|d?

A path is blocked if it includes a node such that either

The arrows on the path meet either head-to-tail or tail-to-tail at
the node, and the node is in the set C (observed) or

The arrows meet head-to-head at the node, and neither the node
nor any of its descendants is in the set C (observed)
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Markov Random Fields (Undirected Graphical Models)
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Markov Random Fields
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Joint Distribution

(—(0 (D
P

» Express joint distribution p(x1,...,x,) =: p(x) as a product of
functions defined on subsets of variables that are local to the
graph

» If x;, x; are not connected directly by a link then x; 1L x;|x\{x;, x;}
(conditionally independent given everything else)
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Factorization of the Joint Distribution

» If x; UL xj|x\{x;, x;} then x;, x; never appear in a common factor in
the factorization of the joint
» Joint distribution as a product of cliques (fully connected
subgraphs)

» Define factors in the decomposition of the joint to be functions of

the variables in (maximum) cliques:

p(x)ec [ [ pelxc)
Example: p(a,b,c,d)ocpi(a)pa(b,c,d)

(—(D  (—D
8 @3
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Factorization of the Joint Distribution

» C: maximal clique

» xc: all variables in this clique

v

Pc(xc): clique potential

v

Z =Y 1 Ic ¥c(xc): normalization constant
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Clique Potentials

Clique potentials ¢c(xc):
* Pc(xc) =0

» Unlike directed graphs, no probabilistic interpretation necessary

(e.g., marginal or conditional).

» If we convert a directed graph into an MRF, the clique potentials
may have a probabilistic interpretation
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Normalization Constant

» Gives us flexibility in the definition the factorization in an MRF

» Normalization constant (also: partition function) Z is required for
parameter learning (not covered in this course)

» In a discrete model with M discrete nodes each having K states,
the evaluation Z requires summing over KM states

» Exponential in the size of the model

» In a continuous model, we need to solve integrals

» Intractable in many cases

» Major limitation of MRFs
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Conditional Independence

Two easy checks for conditional independence:
» A 1L B|C if and only if all paths from A to B pass through C.
(Then, all paths are blocked)
» Alternative: Remove all nodes in C from the graph. If there is a
path from A to B then A 1L B|C does not hold
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Potentials as Energy Functions

» Look only at potential functions with yc(xc) > 0
" Pc(xc) = exp(—E(xc)) for some energy function E

» Joint distribution is the product of clique potentials
» Total energy is the sum of the energies of the clique potentials
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Example: Image Restoration

From PRML (Bishop, 2006)

» Binary image, corrupted by 10% binary noise (pixel values flip
with probability 0.1).
» Objective: Restore noise-free image

» Pairwise MRF that has all its variables joined in cliques of size 2

Graphical Models DAP], Lecture 11 February 10, 2017 20



Image Restoration (2)

T

» MRF-based approach

» Latent variables x; € {—1, 4+1} are the binary noise-free pixel
values that we wish to recover

» Observed variables y; € {—1, +1} are the noise-corrupted pixel
values
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Clique Potentials

Yi

T

Two types of clique potentials:

> log ¢y (xi,vi) = E(xi,yi) = —nxiyi, 17> 0
» Strong correlation between observed and latent variables
> logl[)xx(xi, x]) = E(xi, x]) = *ﬁxixj, :3 >0
for neighboring pixels x;, x;
» Favor similar labels for neighboring pixels (smoothness prior)
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Energy Function

Total energy:

E(x,y) =—172xlyl ﬁZxx]Jthxl

{i.j}

latent-observed |tent-latent bias

» Bias term places a prior on the latent pixel values, e.g., +1.

v

Joint distribution p(x,y) = < exp(—E(x,y))
» Fix y-values to the observed ones ™ Implicitly define p(x|y)
» Example of an Ising model P> Statistical physics

Graphical Models DAPI, Lecture 11 February 10, 2017

23



ICM Algorithm for Image Restoration

Nois'e—corkruptyéd image, ICM, Graph—éut (From PRML (Bishop, 2006))

Iterated Conditional Modes (ICM, Kittler & Foglein, 1984)
1. Initialize all x; = y;
2. Pick any x;: Evaluate total energy
E(V U {+1}y), EGYVU{-1}y)
3. Set x; to whichever state (1) has the lower energy

4. Repeat
» Local optimum
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Relation to Directed Graphs

N e (O

» Directed and undirected graphs express different conditional

independence properties
» Left: a 1L b|&¥, all b|c has no MRF equivalent

» Center: all b|, ¢ 1L dlau b, a 1 b|c U d has no Bayesnet
equivalent
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Factor Graphs

Good references:

Kschischang et al.: Factor Graphs and the Sum-Product Algorithm.
IEEE Transactions on Information Theory (2001)

Loeliger: An Introduction to Factor Graphs. IEEE Signal Processing
Magazine, (2004)
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Factor Graphs

» (Un)directed graphical models express a global function of
several variables as a product of factors over subsets of those
variables

» Factor graphs make this decomposition explicit by introducing
additional nodes for the factors themselves.
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Factorizing the Joint
The joint distribution is a product of factors:

p(x) =] [ f(xs)

»x = (X1,...,%)
» x5: Subset of variables

» fs: Factor; non-negative function of the variables x;

v

Building a factor graph as a bipartite graph:
» Nodes for all random variables (same as in (un)directed graphical
models)
» Additional nodes for factors (black squares) in the joint
distribution
» Undirected links connecting each factor node to all of the variable
nodes the factor depends on
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Example

=

fa fb fc fd

p(x) = fa(x1,x2) fp(x1, X2) fe(x2, X3) fa(x3)

» Efficient inference algorithms for factor graphs (e.g., sum-product
algorithm, see Appendix for more information)
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Applications of Inference in Graphical Models

T
=R

B spARTANV

» Ranking: TrueSkill (Herbrich et al., 2007)

» Computer vision: de-noising, segmentation, semantic labeling, ...
(e.g., Sucar & Gillies, 1994; Shotton et al., 2006; Szeliski et al., 2008)

» Coding theory: Low-density parity-check codes, turbo codes, ...
(e.g., McEliece et al., 1998)

» Linear algebra: Solve linear equation systems (Shental et al., 2008)

» Signal processing: Iterative state estimation (e.g., Bickson et al.,
2007; Deisenroth & Mohamed, 2012)
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Revision: From Joints to Graphs

Consider the joint distribution
p(a,b,c) = p(cla,b)p(bla)p(a)
Building the corresponding graphical model:
1. Create a node for all random variables
2. For each conditional distribution, we add a directed link (arrow)

to the graph from the nodes corresponding to the variables on
which the distribution is conditioned on

(@) (D)
N4

» Graph layout depends on the choice of factorization
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Revision: From Graphs to Joints

» Joint distribution is the product of a set of conditionals, one for
each node in the graph

» Each conditional is conditioned only on the parents of the
corresponding node in the graph

p(x1,x2, X3, x4, %5) = p(x1)p(x5)p(x2]|x5) p(x3|%1, X2) p(Xa| X2)

In general: p(x) = HkK:1 p(xklpay)
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MRF — Factor Graph

1. Take variable nodes from MRF

2. Create additional factor nodes corresponding to the maximal

cliques x;
3. The factors fs(xs) equal the clique potentials
4. Add appropriate links

Not unique
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Directed Graph — MRF

» Moralization:
» Add additional undirected links between all pairs of parents for
each node in the graph
» Drop arrows on original links

v

Identify (maximum) cliques
» Initialize all clique potentials to 1

» Take each conditional distribution factor in the directed graph,
multiply it into one of the clique potentials
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Example: MRF — Factor Graph

i

» MRF with clique potential (x1, x2, x3)
» Factor graph with factor f(x1,x2, x3) = ¢(x1, x2,x3)
» Factor graph with factors, such that

falx1,x2,%3) fp(x2, x3) = P(x1, X2, X3)
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Directed Graphical Model — Factor Graph

1. Take variable nodes from Bayesian network

2. Create additional factor nodes corresponding to the conditional
distributions

3. Add appropriate links

Not unique
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Example: Directed Graph — Factor Graph

» Directed graph with factorization p(x1)p(x2)p(x3|x1, x2)
p(x1)p

» Factor graph with factor f(x1, x2,x3) = p(x1)p(x2)p(x3]|x1, X2)

» Factor graph with factors f, = p(x1), fp = p(x2), fc = p(x3]x1, x2)

Graphical Models DAPI, Lecture 11 February 10, 2017
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Removing Cycles

Q@
Y Lo,
@ @ @ X1, L9, T3
o

» Local cycles in an (un)directed graph (due to links connecting
parents of a node) can be removed on conversion to a factor
graph
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Sum-Product Algorithm for Factor Graphs

» Factor graphs give a uniform treatment to message passing

» Two different types of messages:

» Messages i, ¢(x) from variable nodes to factors
» Messages jis,(x) from factors to variable nodes

» Factors transform messages into evidence for the receiving node.
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Variable-to-Factor Message

Hxy—fs (xm) = H Vﬁaxm(xm)
lene(xp)\fs

» Take the product of all incoming messages along all other links

» A variable node can send a message to a factor node once it has
received messages from all other neighboring factors

» The message that a node sends to a factor is made up of the
messages that it receives from all other factors.
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Factor-to-Variable Message

Hf,aa:(x)

(X =Z D fsx, ) [T seon (o)

XM mene(fs)\x

» Take the product of the incoming messages along all other links
coming into the factor node

» Multiply by the factor associated with that node

» Marginalize over all of the variables associated with the
incoming messages
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Initialization

» If the leaf node is a variable nodes, initialize the corresponding
messages to 1:

Vx—»f(x) =1

» If the leaf node is a factor node, the message should be

Prox(¥) = f(x)
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Example (1)

T4
From PRML (Bishop, 2006)

Graphical Models

Hop,(x1) =1
Hfox, (X2) = Zfa(xl,xz) 1
x1

Payfo(xa) =1
:ufcﬁxz(xz) = ch<x2/ X4) -1
X4

My, (X2) = Hfyman, (X2)f oy (X2)
Hfy—xs (X3) = Zfb(le xS),uxzafb(XQ)
X2
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Example (2)

a:1<_‘_zz‘_‘_z3
O—a—0O—=—0
lfc
l
T4

From PRML (Bishop, 2006)

Graphical Models

,uX3—>fh (x3) = 1
Hfpony (X2) = Y fiy(a2,x3) - 1
x3

My f,(X2) = Py ony (X2) P fony (X2)
l’lfuﬂxl (xl) = Zfﬂ(xlfxz)]/[XZA’fu (XZ)

X2
sz—’fc(xz) = Aufa—’xz(xz).ufb—)JCz (xz)
Hhoooxy (¥4) = D felX2, X4) s 1. (22)
X2
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Marginals

For a single variable node the marginal is given as the product of all
incoming messages:

p(x) = H ,Mf,'gn\”(x)
fiene(x)
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