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Limitations of Gaussian Processes

Computational and memory complexity
Training set size: N

§ Training scales in OpN3q

§ Prediction (variances) scales in OpN2q

§ Memory requirement: OpND` N2q

Practical limit N « 10, 000
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Large-Scale GPs via Distributed Inference
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§ Randomly split the full data set into M chunks

§ Place M independent GP models (experts) on these small chunks

§ Independent computations can be distributed

§ Block-diagonal approximation of kernel matrix K

§ Combine independent computations to an overall result
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Training the Distributed GP

§ Split data set of size N into M chunks of size P

§ Independence of experts Factorization of marginal likelihood:

log ppy|X, θq «
ÿM

k“1
log pkpypkq|Xpkq, θq

§ Distributed optimization and training straightforward

§ Computational complexity: OpMP3q [instead of OpN3q]
But distributed over many machines

§ Memory footprint: OpMP2 ` NDq [instead of OpN2 ` NDq]
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Empirical Training Time
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Number of GP experts (DGP)

§ NLML is proportional to training time

§ Full GP (16K training points) « sparse GP (50K training points)
« distributed GP (16M training points)

Push practical limit by order(s) of magnitude
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Practical Training Times

§ Training* with N “ 106, D “ 1 on a laptop: « 30 min

§ Training* with N “ 5ˆ 106, D “ 8 on a workstation: « 4 hours

*: Maximize the marginal likelihood, stop when converged**

**: Convergence often after 30–80 line searches***

***: Line search « 2–3 evaluations of marginal likelihood and
its gradient (usually OpN3q)
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Predictions with the Distributed GP

µ, σ

µ1, σ1 µ2, σ2 µ3, σ3

§ Prediction of each GP expert is Gaussian N
`

µi, σ2
i

˘

§ How to combine them to an overall prediction N
`

µ, σ2
˘

?

Product-of-GP-experts

§ PoE (product of experts) (Ng & Deisenroth, 2014)

§ gPoE (generalized product of experts) (Cao & Fleet, 2014)

§ BCM (Bayesian Committee Machine) (Tresp, 2000)

§ rBCM (robust BCM) (Deisenroth & Ng, 2015)
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Objectives

µ, σ

µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

Figure: Two computational graphs

§ Scale to large data sets 3

§ Good approximation of full GP (“ground truth”)

§ Predictions independent of computational graph
Runs on heterogeneous computing infrastructures (laptop,

cluster, ...)

§ Reasonable predictive variances
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Running Example

Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions
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Product of GP Experts

§ Prediction model (independent predictors):

pp f˚|x˚,Dq “
M
ź

k“1

GP expert
hkkkkkkkkikkkkkkkkj

pkp f˚|x˚,Dpkqq ,

pkp f˚|x˚,Dpkqq “ N
`

f˚ | µkpx˚q, σ2
k px˚q

˘

§ Predictive precision (inverse variance) and mean:

pσ
poe
˚ q´2 “

ÿ

k
σ´2

k px˚q

µ
poe
˚ “ pσ

poe
˚ q2

ÿ

k
σ´2

k px˚qµkpx˚q

§ Independent of the computational graph 3
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Product of GP Experts

§ Unreasonable variances for M ą 1:

pσ
poe
˚ q´2 “

ÿ

k
σ´2

k px˚q

§ The more experts the more certain the prediction, even if every
expert itself is very uncertain 7 Cannot fall back to the prior
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Generalized Product of GP Experts (Cao & Fleet, 2014)

§ Weight the responsiblity of each expert in PoE with βk

§ Prediction model (independent predictors):

pp f˚|x˚,Dq “
M
ź

k“1

p
βk

k p f˚|x˚,Dpkqq

pkp f˚|x˚,Dpkqq “ N
`

f˚ | µkpx˚q, σ2
k px˚q

˘

§ Predictive precision and mean:

pσ
gpoe
˚ q´2 “

ÿ

k
βkσ´2

k px˚q

µ
gpoe
˚ “ pσ

gpoe
˚ q2

ÿ

k
βkσ´2

k px˚q µkpx˚q

§ With
ř

k βk “ 1, the model can fall back to the prior 3

“Log-opinion pool” model (Heskes, 1998)
§ Independent of computational graph for βk “ 1{M 3
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Generalized Product of GP Experts (Cao & Fleet, 2014)

§ Same mean as PoE
§ Model no longer overconfident and falls back to prior 3

§ Very conservative variances 7
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Bayesian Committee Machine (Tresp, 2000)

§ Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

§ Prediction model (Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

§ Predictive precision and mean:

pσbcm
˚ q´2 “

ÿM

k“1
σ´2

k px˚q ´pM´ 1qσ´2
˚˚

µbcm
˚ “ pσbcm

˚ q2
ÿM

k“1
σ´2

k px˚qµkpx˚q

§ Product of GP experts, divided by M´ 1 times the prior
§ Guaranteed to fall back to the prior outside data regime 3

§ Independent of computational graph 3
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Bayesian Committee Machine

§ Variance estimates are about right 3

§ When leaving the data regime, the BCM can produce junk 7

Robustify
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Robust Bayesian Committee Machine

§ Merge gPoE (weighting of experts) with the BCM (Bayes’
theorem when combining predictions)

§ Prediction model (conditional independence Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq “
śM

k“1 p
βk

k p f˚|x˚,Dpkqq
p
ř

k βk´1p f˚q

§ Predictive precision and mean:

pσrbcm
˚ q´2 “

ÿM

k“1
βkσ´2

k px˚q `p1´
řM

k“1 βkqσ
´2
˚˚ ,

µrbcm
˚ “ pσrbcm

˚ q2
ÿ

k
βkσ´2

k px˚q µkpx˚q
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Robust Bayesian Committee Machine

§ Does not break down in case of weak experts Robustified 3

§ Robust version of BCM Reasonable predictions 3

§ Independent of computational graph (for all choices of βk) 3
Distributed Gaussian Processes Marc Deisenroth February 15, 2018 17



Setting the Weighting βk

§ The gPoE and the rBCM have a βk parameter that assigns
individual experts different weights when predicting:

pp f˚|x˚,Dq “
źM

k“1
p

βk
k p f˚|x˚,Dpkqq

pp f˚|x˚,Dq “
śM

k“1 p
βk

k p f˚|x˚,Dpkqq
p
ř

k βk´1p f˚q

§ Intuition: Set βkpx˚q such that “informed” GP experts get more
influence

§ Use some distance/divergence between GP prior and GP
posterior at test point x˚

§ Some options for βk:
§ βk 9 KLpprior||posteriorq
§ βk 9 DiffEntpprior, posteriorq
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Splitting the Data

−1

−1 −1

−1

−1

−1
=

§ Data sets should be of approximately the same size

§ Random assignment of data points to experts

§ Cluster inputs (e.g., k-means), assign clusters to experts

Distributed Gaussian Processes Marc Deisenroth February 15, 2018 19



Empirical Approximation Error (1)
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§ Simulated robot arm data (10K training, 10K test)
§ Hyper-parameters of ground-truth full GP
§ RMSE as a function of the training time
§ Subset of data (SOD) performs worse than any distributed GP
§ rBCM performs best with “weak” GP experts
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Empirical Approximation Error (2)
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§ NLPD as a function of the training time Mean and variance
§ BCM and PoE are not robust for weak experts
§ gPoE suffers from too conservative variances
§ rBCM consistently outperforms other methods
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Summary: Distributed Gaussian Processes

µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

§ Scale Gaussian processes to large data (beyond 106)

§ Model conceptually straightforward and easy to train

§ Key: Distributed computation

§ Currently tested with N ą 107

§ Scales to arbitrarily large data sets (with enough computing
power)
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Scaling GPs using Inducing Inputs

f(x1) f(xN ) f∗
1 f∗

L

Training data Test data

f(u1) f(uM )

Inducing function values
Training function values fi

Hypothetical function values fu

§ Introduce inducing function values fu

“Hypothetical” function values

§ All function values are still jointly Gaussian distributed (e.g.,
training, test and inducing function values)

§ Compress information into inducing function values

§ Selected references: [6–13]
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Gaussian Processes in High-Energy Physics

§ LHC BSM simulator experiments (e.g., predicting natural
supersymmetry signal events) can be very time consuming

§ Sampling in a high-dimensional parameter space of theoretical
models

§ Monte Carlo sampling of collision events
§ Run samples through a detector simulation
§ Compare predicted signal with real data

Bottleneck for global theoretical analysis of BSM theories
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Rapid Predictions

§ Learn mapping between theory and data

§ Rapidly predict signal region (SR) differences

§ Model the relationship between BSM parameters θ and SR
efficiency ε with Gaussian processes: ε “ f pθq, f „ GP.
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GP Surrogate Model for the Full Simulation Chain
µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

Challenges:

§ Training set is moderately large (18,000) Distributed GPs

Results:

§ Similar to expensive MC simulator (event generator)

§ 10,000-fold speedup for reconstruction of theory parameters

§ Rapid reconstruction of the theory parameters of a BSM model

§ New opportunities in the interpretation of LHC data
Deisenroth & Ng (ICML, 2015): Distributed Gaussian Processes
Bertone et al. (arXiv 1611.02704): Accelerating the BSM Interpretation of LHC Data with Machine Learning
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BCM: Derivation

Conditional Independence Assumption (BCM)

Dpjq KK Dpkq| f˚

pp f˚|Dpjq,Dpkqq 9 ppDpjq,Dpkq| f˚qpp f˚q
BCM
“ ppDpjq| f˚q ppDpkq| f˚qpp f˚q

“
ppDpjq, f˚q ppDpkq, f˚q

pp f˚q

9
pkp f˚|Dpkqqpjp f˚|Dpjqq

pp f˚q
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