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Conditional Independence

» Independence

a Il b< P(a,b) = P(a)P(b)|
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Conditional Independence

» Independence

la ILb< P(a,b) = P(a)P(b)|

» Conditional independence

a 1L ble < P(a,blc) = P(alc)P(blc) |

» Factorisability of joint distributions
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Conditional Independence

| P(x) = P(x1]x2) P(xa|x3) P(x3]x4) P(xs) |
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Conditional Independence

| P(x) = P(x1]x2) P(xa|x3) P(x3]x4) P(xs) |

P(x1) = Y>> P(x1|x2)P(xa|x3)P(x3|x4) P(xs)

X2 X3 X4
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Conditional Independence

| P(x) = P(x1]x2) P(xa|x3) P(x3]x4) P(xs) |

P(x1) = Y>> P(x1|x2)P(xa|x3)P(x3|x4) P(xs)

= ZZP(X1IXZ>P(JC2|X3){ ZP(X3’X4)P(X4)}
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Conditional Independence

| P(x) = P(x1]x2) P(xa|x3) P(x3]x4) P(xs) |

P(x1) = Y>> P(x1|x2)P(xa|x3)P(x3|x4) P(xs)

= ZZP(JQ’XZ)P(XZPQ){ ZP(X3’X4)P(X4)}
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Conditional Independence

| P(x) = P(x1]x2) P(xa|x3) P(x3]x4) P(xs) |

P(x1) = Y>> P(x1|x2)P(xa|x3)P(x3|x4) P(xs)

= ZZP(X1IXZ>P(JC2|X3){ ZP(X3’X4)P(X4)}
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Conditional Independence

| P(x) = P(x1]x2) P(xa|x3) P(x3]x4) P(xs) |

P(x1) = Y>> P(x1|x2)P(xa|x3)P(x3|x4) P(xs)

X2 X3 X4

— ZZP(Xl!xz)P(xﬂxa){ ZP(X3IX4>P(JC4)}

X2 X1

_ EMMn%;HMm%;HmmWW%}
:{;mmm%§HMmﬂ§m@mwmﬁﬂ

» Achieved due to factorisability of the distribution.
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Probabilistic graphical models

| P(x) = P(x1]x2)P(x2|x3) P(x3|xa) P(xa)

» P(x3) = { 2, P(X1|x2){ 2, P(x2|x3){ 2, Plslxa)Plaa) } }}
» Graphs
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Probabilistic graphical models

| P(x) = P(x1]x2)P(x2|x3) P(x3|xa) P(xa)

» P(x3) = { 2, P(X1|x2){ 2, P(x2|x3){ 2, Plslxa)Plaa) } }}
» Graphs

» Conditional independence between random variables.
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Probabilistic graphical models

| P(x) = P(x1]x2)P(x2|x3) P(x3|xa) P(xa)

» P(x3) = { 2, P(X1|x2){ 2, P(x2|x3){ 2, Plslxa)Plaa) } }}
» Graphs

» Conditional independence between random variables.
» Use graph algorithms for efficient inference.
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Revision: Graphical Model for Linear Regression

We are given a data set
(x1,Y1), ..., (xN,yN) Where

yi=f(xi) +e e~N(0,0?)

with f unknown.
» Find a (regression) model that
explains the data

From PRML (Bishop, 2006)
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Revision: Graphical Model for Linear Regression

From PRML (Bishop, 2006)

We are given a data set
(x1,Y1), ..., (xN,yN) Where

yi=f(xi) +e e~N(0,0?)

with f unknown.
» Find a (regression) model that
explains the data

» Consider polynomials f(x) = Z]]\i 0 wjxf with parameters

w = [wo,...,wm]" .

» Bayesian linear regression: Place a conjugate Gaussian prior on
the parameters: p(w) = N (0, a°I)

Graphical Models
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Revision: Graphical Model for Linear Regression

N /\@ pylx) = N (y| f(x), o?)

0 M .
° flx) = Z w;x!
" i=0
- - p(w) = N (0, zsz)

From PRML (Bishop, 2006)
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Revision: Graphical Model for Linear Regression

N pylx) = N(y| f(x), o%)
0 ° o\ O o M .
o, flx) =Y wid
; ° j=0
0 1 p(w) = N (0, a?I)

From PRML (Bishop, 2006)
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Revision: Graphical Model for Linear Regression

N pylx) = N(y| f(x), o%)
0 ° o\ O o M .
o, flx) =Y wid
; ° j=0
0 1 p(w) = N (0, a?I)

From PRML (Bishop, 2006)
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Compact representation

G
Pr({yg, Vo> tak: Boks Las fg, Znsing H{wna}) = Hp(ygip)P(Vg‘J)p(fg‘o‘)'
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From Kim et al. (NIPS, 2015)
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Compact representation

G
Pr({yg, Vo> tak: Boks Las fg, Znsing H{wna}) = Hp(yg‘P)P(Vg‘J)p(fg‘o‘)'
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Image Restoration

» Latent variables x; € {—1, +1} are the binary noise-free pixel

values that we wish to recover

» Observed variables y; € {—1, +1} are the noise-corrupted pixel

values

Graphical Models DAPI, Lecture 11 February 08, 2018



Probabilistic Graphical Models

» Nodes: Random variables

» Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs

\

Decomposable graphs

Graphical Models DAPI, Lecture 11 February 08, 2018



Graphical Models

Primer in graph theory
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Graphs

» G:(V,E)
» Undirected graph
» V' ={1,2,3,4}

» E={(12),(23),(34)(1
» (1,2) is identical to (2,1)

4), (1,

3),(2,4)}

Graphical Models
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Graphs

» G:(V,E)
» Directed graph
V= {1,2,3,4}
» E={(1,2),(21),(2,3),(43),(1,4),(3,1),(2,4)}
» (1,2) is not identical to (2,1)
1

3
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Graph theory

» Path: A path between the nodes i and j in a graph is the selection
of subset of edges of the form {(i, c1), (c1,¢2),..., (ck )}

Figure: Path from 4 to 2
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Graph theory

» Path: A path between the nodes i and j in a graph is the selection
of subset of edges of the form {(i, c1), (c1,¢2),..., (ck )}
» Cycles: Paths that start and end at the same vertex are called

cycles.

3 3
Figure: Cycles that pass through all the nodes

Graphical Models DAPI, Lecture 11 February 08, 2018

12



Cliques

» Clique: A completely connected subgraph of a graph is called a
clique denoted by Ci, where k is the number of nodes in the
clique.

Cz C3 C4 C5
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Cliques

» Clique: A completely connected subgraph of a graph is called a
clique denoted by Ci, where k is the number of nodes in the

clique.

» Remark: All vertex induced subgraphs of a clique are cliques.

Cz C3 C4 C5
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clique in the graph are maximal cliques.

Graphical Models

Maximal cliques
» Maximal cliques: All cliques that are not subgraphs of any other

DAPI, Lecture 11

February 08, 2018

14



Maximal cliques

» Maximal cliques: All cliques that are not subgraphs of any other
clique in the graph are maximal cliques.
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Decomposable graphs

» Chord: A chord is an edge between the vertices of a cycle but not

part of the cycle.
» Decomposable graph: A graph is decomposable if all cycles with
length 4 or higher have a chord.
» Chordal graph
» Triangulated graph

» Tree-width: Tree-width of a graph is the size of the biggest clique
in the graph minus 1.
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Probabilistic Graphical Models

» Nodes: Random variables

» Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs
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Directed graphical models: DAG

» Directed Acyclic Graphs(DAG) : Directed acyclic graphs are
directed graphs that do not contain any directed cycles.

1
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Graphical Models

Conditional Independences models
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Factorisability on a DAG

» Let G(V,E) be a DAG
» Let 71;(G) denote the parents of the node i, i.e.,

7(G) = {j € V|(j,i) € E}

» Joint probability distribution

p(x) =] [ p(xilmi(G))

eV
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Factorisability on a DAG

» Let G(V,E) be a DAG
» Let 71;(G) denote the parents of the node i, i.e.,

7(G) = {j € V|(j,i) € E}

» Joint probability distribution

p(x) =] [ p(xilmi(G))

eV

1

AN

p(x) = p(x1)p(xz|x1)p(xalx1, x2)
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Directed graphical models: D-separation

» D-separation: It encodes the conditional independences between
random variables in a directed graph.
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Directed graphical models: D-separation

» D-separation: It encodes the conditional independences between
random variables in a directed graph.
» Bayes ball algorithm.

» Assume conditioned variables, ¢ to be shaded

» Place balls at node a and let the ball bounce around based on
Bayes Ball rules

» If the ball does not reach the node b then a 1L b|c
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Directed graphical models: D-separation

» D-separation: It encodes the conditional independences between
random variables in a directed graph.
» Bayes ball algorithm.

» Assume conditioned variables, ¢ to be shaded
» Place balls at node a and let the ball bounce around based on

Bayes Ball rules
» If the ball does not reach the node b then a L b|c
» The same notion may be extended to sets. A 1L B|C if each
random variable in the set A is conditionally independent of each
node in set B given that all the random variables in the set C are

observed.
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Bayes ball rules

+
N




Probabilistic Graphical Models

» Nodes: Random variables

» Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs
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Factorisation on an Undirected graphical models

» C: maximal clique

» xc: all variables in this clique

v

Pc(xc): clique potential

v

Z =3 1 1c ¥c(xc): normalization constant

» Markov Random Fields
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Clique Potentials

Clique potentials c(xc):
* Pe(xc) =0
» Unlike directed graphs, no probabilistic interpretation necessary

» If we convert a directed graph into an undirected graph, the
clique potentials may have a probabilistic interpretation
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Normalization Constant

pix) =7 [ Jwe(xe)

C

» Gives us flexibility in the definition the factorization in an
undirected graphical model

» Normalization constant (also: partition function) Z is required for
parameter learning (not covered in this course)
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Normalization Constant

pix) =7 [ [¢c(xc)

C

» Gives us flexibility in the definition the factorization in an
undirected graphical model

» Normalization constant (also: partition function) Z is required for
parameter learning (not covered in this course)
» In a discrete model with M discrete nodes each having K states,

the evaluation Z requires summing over KM states
» Exponential in the size of the model

» In a continuous model, we need to solve integrals

» Intractable in many cases
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Conditional Independence

Two easy checks for conditional independence:
» A 1L B|C if and only if all paths from A to B pass through C.
(Then, all paths are blocked)
» Alternative: Remove all nodes in C from the graph. If there is a
path from A to B then A 1L B|C does not hold
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Probabilistic Graphical Models

» Nodes: Random variables

» Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs

\

Decomposable graphs
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Decomposable graphs - Joint trees

G(V,E) is a decomposable graph
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Decomposable graphs - Joint trees

G(V,E) is a decomposable graph

» Joint tree: running intersection property Eg: Consider vertex 2
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Decomposable graphs - Joint trees

G(V,E) is a decomposable graph

» Joint tree: running intersection property Eg: Consider vertex 2
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Decomposable graphs - Joint trees

G(V,E) is a decomposable graph

» Joint tree: running intersection property Eg: Consider vertex 2

» C(G): maximal cliques of G (cyan)

(1,46 [ 2,47)(259)(3,538]
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Decomposable graphs - Joint trees

G(V,E) is a decomposable graph
» Joint tree: running intersection property Eg: Consider vertex 2
» C(G): maximal cliques of G (cyan)
» 7 (G): minimal separators of G (red)
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Decomposable graphs - Joint trees

G(V,E) is a decomposable graph
» Joint tree: running intersection property Eg: Consider vertex 2
» C(G): maximal cliques of G (cyan)
» T (G): minimal separators of G (red)

[cecis) Plxc)
(C.D)eT(G) P(XcAD)
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Decomposable graphs

G(V,E) is a decomposable graph

[cecic) P(xc)
H(C,D)eT(G) p(xcap)

p(x) =

» Inference exponential in treewidth of the graph
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Conditional independences

Conditional Independence models

DAG Undirected graphs|

\ Decompsable graphs \

» Add additional undirected links between all pairs of parents for

» Moralisation:

each node in the graph.
» Drop arrows on original links
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Example: Image Restoration

From PRML (Bishop, 2006)

» Binary image, corrupted by 10% binary noise (pixel values flip
with probability 0.1).
» Objective: Restore noise-free image

» Pairwise MRF that has all its variables joined in cliques of size 2
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Image Restoration (2)

» MRF-based approach

» Latent variables x; € {—1, 4+1} are the binary noise-free pixel
values that we wish to recover

Graphical Models DAPI, Lecture 11 February 08, 2018
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Image Restoration (2)

» MRF-based approach

» Latent variables x; € {—1, 4+1} are the binary noise-free pixel
values that we wish to recover

» Observed variables y; € {—1, +1} are the noise-corrupted pixel
values
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Clique Potentials

Two types of clique potentials:

> log ¢y (xi,vi) = E(xi,yi) = —nxiyi, 17> 0
» Strong correlation between observed and latent variables
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Clique Potentials

Two types of clique potentials:

> log ¢y (xi,vi) = E(xi,yi) = —nxiyi, 17> 0
» Strong correlation between observed and latent variables
> logl[)xx(xi, x]) = E(xi, x]) = *ﬁxixj, :3 >0
for neighboring pixels x;, x;
» Favor similar labels for neighboring pixels (smoothness prior)
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Energy Function

Total energy:

E(x,y) =—172xlyl ﬁZxx]Jthxl

{i.j}

latent-observed |tent-latent bias

» Bias term places a prior on the latent pixel values, e.g., +1.

v

Joint distribution p(x,y) = < exp(—E(x,y))
» Fix y-values to the observed ones ™ Implicitly define p(x|y)
» Example of an Ising model P> Statistical physics
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ICM Algorithm for Image Restoration

Noiée—coi‘rupfed image, ICM, Graph—éut (From PRML (Bishop, 2006))

Iterated Conditional Modes (ICM, Kittler & Foglein, 1984)
1. Initialize all x; = y;
2. Pick any x;: Evaluate total energy
E(V U {+1}y), EGYVU{-1}y)
3. Set x; to whichever state (1) has the lower energy

4. Repeat
» Local optimum
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Graphical Models

Thank You!!
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