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Conditional Independence
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§ Achieved due to factorisability of the distribution.
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Probabilistic graphical models

Ppxq “ Ppx1|x2qPpx2|x3qPpx3|x4qPpx4q

§ Ppx3q “

"

ř

x2
Ppx1|x2q

"

ř

x3
Ppx2|x3q

"

ř

x4
Ppx3|x4qPpx4q

***

§ Graphs

§ Conditional independence between random variables.
§ Use graph algorithms for efficient inference.
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Revision: Graphical Model for Linear Regression

x

t

0 1

−1

0

1

From PRML (Bishop, 2006)

We are given a data set
px1, y1q, . . . , pxN , yNqwhere

yi “ f pxiq ` ε, ε „ N
`

0, σ2˘

with f unknown.
Find a (regression) model that

explains the data

§ Consider polynomials f pxq “
řM

j“0 wjxj with parameters
w “ rw0, . . . , wMs

J.
§ Bayesian linear regression: Place a conjugate Gaussian prior on

the parameters: ppwq “ N
`

0, α2I
˘
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Revision: Graphical Model for Linear Regression

x

t

0 1

−1

0

1

From PRML (Bishop, 2006)

ppy|xq “ N
`

y | f pxq, σ2˘

f pxq “
M
ÿ

j“0

wjxj

ppwq “ N
`

0, α2I
˘

w

y1 yN

w

yn
N

w

yn
N

xn

α

σ
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Compact representation

From Kim et al. (NIPS, 2015)

From Kim et al. (NIPS, 2015)
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Image Restoration

xi

yi

§ Latent variables xi P t´1,`1u are the binary noise-free pixel
values that we wish to recover

§ Observed variables yi P t´1,`1u are the noise-corrupted pixel
values
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Probabilistic Graphical Models

§ Nodes: Random variables

§ Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs

Decomposable graphs
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Primer in graph theory
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Graphs

§ G : pV, Eq
§ Undirected graph

§ V “ t1, 2, 3, 4u
§ E “ tp1, 2q, p2, 3q, p3, 4q, p1, 4q, p1, 3q, p2, 4qu
§ p1, 2q is identical to p2, 1q

1

2

3

4
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Graphs

§ G : pV, Eq
§ Directed graph

§ V “ t1, 2, 3, 4u
§ E “ tp1, 2q, p2, 1q, p2, 3q, p4, 3q, p1, 4q, p3, 1q, p2, 4qu
§ p1, 2q is not identical to p2, 1q

1

2

3

4
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Graph theory

§ Path: A path between the nodes i and j in a graph is the selection
of subset of edges of the form tpi, c1q, pc1, c2q, . . . , pck, jqu.

§ Cycles: Paths that start and end at the same vertex are called
cycles.

1

2

3

4

1

2

3

4

Figure: Path from 4 to 2
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Graph theory

§ Path: A path between the nodes i and j in a graph is the selection
of subset of edges of the form tpi, c1q, pc1, c2q, . . . , pck, jqu.

§ Cycles: Paths that start and end at the same vertex are called
cycles.

1

2

3

4

1

2

3

4

Figure: Cycles that pass through all the nodes
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Cliques

§ Clique: A completely connected subgraph of a graph is called a
clique denoted by Ck, where k is the number of nodes in the
clique.

§ Remark: All vertex induced subgraphs of a clique are cliques.

C2 C3 C4 C5
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Maximal cliques

§ Maximal cliques: All cliques that are not subgraphs of any other
clique in the graph are maximal cliques.
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Decomposable graphs

§ Chord: A chord is an edge between the vertices of a cycle but not
part of the cycle.

§ Decomposable graph: A graph is decomposable if all cycles with
length 4 or higher have a chord.

§ Chordal graph
§ Triangulated graph

§ Tree-width: Tree-width of a graph is the size of the biggest clique
in the graph minus 1.

6 1 3 8

4

2

5

7 9
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Probabilistic Graphical Models

§ Nodes: Random variables

§ Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs
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Directed graphical models: DAG

§ Directed Acyclic Graphs(DAG) : Directed acyclic graphs are
directed graphs that do not contain any directed cycles.

1

2

3

4
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Conditional Independences models
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Factorisability on a DAG

§ Let GpV, Eq be a DAG
§ Let πipGq denote the parents of the node i, i.e.,

πipGq “ tj P V|pj, iq P Eu

§ Joint probability distribution

ppxq “
ź

iPV

ppxi|πipGqq

1

2 3

ppxq “ ppx1qppx2|x1qppx3|x1, x2q
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Directed graphical models: D-separation

§ D-separation: It encodes the conditional independences between
random variables in a directed graph.

§ Bayes ball algorithm.
§ Assume conditioned variables, c to be shaded
§ Place balls at node a and let the ball bounce around based on

Bayes Ball rules
§ If the ball does not reach the node b then a KK b|c

§ The same notion may be extended to sets. A KK B|C if each
random variable in the set A is conditionally independent of each
node in set B given that all the random variables in the set C are
observed.
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Bayes ball rules
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Probabilistic Graphical Models

§ Nodes: Random variables

§ Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs
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Factorisation on an Undirected graphical models

ppxq “
1
Z

ź

C

ψCpxCq

§ C: maximal clique

§ xC: all variables in this clique

§ ψCpxCq: clique potential

§ Z “
ř

x
ś

C ψCpxCq: normalization constant

§ Markov Random Fields
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Clique Potentials

ppxq “
1
Z

ź

C

ψCpxCq

Clique potentials ψCpxCq:

§ ψCpxCq ě 0

§ Unlike directed graphs, no probabilistic interpretation necessary

§ If we convert a directed graph into an undirected graph, the
clique potentials may have a probabilistic interpretation
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Normalization Constant

ppxq “
1
Z

ź

C

ψCpxCq

§ Gives us flexibility in the definition the factorization in an
undirected graphical model

§ Normalization constant (also: partition function) Z is required for
parameter learning (not covered in this course)

§ In a discrete model with M discrete nodes each having K states,
the evaluation Z requires summing over KM states

Exponential in the size of the model

§ In a continuous model, we need to solve integrals
Intractable in many cases

Graphical Models DAPI, Lecture 11 February 08, 2018 25



Normalization Constant

ppxq “
1
Z

ź

C

ψCpxCq

§ Gives us flexibility in the definition the factorization in an
undirected graphical model

§ Normalization constant (also: partition function) Z is required for
parameter learning (not covered in this course)

§ In a discrete model with M discrete nodes each having K states,
the evaluation Z requires summing over KM states

Exponential in the size of the model

§ In a continuous model, we need to solve integrals
Intractable in many cases

Graphical Models DAPI, Lecture 11 February 08, 2018 25



Conditional Independence

A
C

B

Two easy checks for conditional independence:
§ A KK B|C if and only if all paths from A to B pass through C.

(Then, all paths are blocked)
§ Alternative: Remove all nodes in C from the graph. If there is a

path from A to B then A KK B|C does not hold
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Probabilistic Graphical Models

§ Nodes: Random variables

§ Edges: Relation between the random variables

Conditional Independence models

DAG Undirected graphs

Decomposable graphs
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Decomposable graphs - Joint trees

GpV, Eq is a decomposable graph

§ Joint tree: running intersection property Eg: Consider vertex 2

§ CpGq: maximal cliques of G (cyan)

§ T pGq: minimal separators of G (red)

2
5

4

7 9

86 1 3
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Decomposable graphs - Joint trees

GpV, Eq is a decomposable graph
§ Joint tree: running intersection property Eg: Consider vertex 2

§ CpGq: maximal cliques of G (cyan)
§ T pGq: minimal separators of G (red)

1, 2, 3

1, 2, 4

1, 4, 6 2, 4, 7

2, 3, 5

1, 2 2, 3

2, 4

3, 5, 82, 5, 9

2, 5 3, 5
2

5
4

7 9

86 1 3

1, 4

ppxq “

ś

CPCpGq ppxCq
ś

pC,DqPT pGq ppxCXDq
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Decomposable graphs

GpV, Eq is a decomposable graph

1, 2, 3

1, 2, 4

1, 4, 6 2, 4, 7

2, 3, 5

1, 2 2, 3

2, 4

3, 5, 82, 5, 9

2, 5 3, 5
2

5
4

7 9

86 1 3

1, 4

ppxq “

ś

CPCpGq ppxCq
ś

pC,DqPT pGq ppxCXDq

§ Inference exponential in treewidth of the graph
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Conditional independences

Conditional Independence models

DAG Undirected graphs

Decompsable graphs

§ Moralisation:
§ Add additional undirected links between all pairs of parents for

each node in the graph.
§ Drop arrows on original links
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Example: Image Restoration

From PRML (Bishop, 2006)

§ Binary image, corrupted by 10% binary noise (pixel values flip
with probability 0.1).

§ Objective: Restore noise-free image

Pairwise MRF that has all its variables joined in cliques of size 2
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Image Restoration (2)

xi

yi

§ MRF-based approach

§ Latent variables xi P t´1,`1u are the binary noise-free pixel
values that we wish to recover

§ Observed variables yi P t´1,`1u are the noise-corrupted pixel
values
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Clique Potentials

xi

yi

Two types of clique potentials:

§ log ψxypxi, yiq “ Epxi, yiq “ ´ηxiyi , η ą 0
Strong correlation between observed and latent variables

§ log ψxxpxi, xjq “ Epxi, xjq “ ´βxixj , β ą 0
for neighboring pixels xi, xj

Favor similar labels for neighboring pixels (smoothness prior)
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Energy Function

Total energy:

Epx, yq “ ´η
ÿ

i

xiyi

loooomoooon

latent-observed

´β
ÿ

ti,ju

xixj

looooomooooon

latent-latent

` h
ÿ

i

xi

loomoon

bias

§ Bias term places a prior on the latent pixel values, e.g., `1.

§ Joint distribution ppx, yq “ 1
Z expp´Epx, yqq

§ Fix y-values to the observed ones Implicitly define ppx|yq

§ Example of an Ising model Statistical physics
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ICM Algorithm for Image Restoration

Noise-corrupted image, ICM, Graph-cut (From PRML (Bishop, 2006))

Iterated Conditional Modes (ICM, Kittler & Föglein, 1984)

1. Initialize all xi “ yi

2. Pick any xj: Evaluate total energy
Epxzj Y t`1u, yq, Epxzj Y t´1u, yq

3. Set xj to whichever state (˘1) has the lower energy

4. Repeat
Local optimum
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Thank You!!
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