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Monte Carlo Methods—Motivation

§ Monte Carlo methods are computational techniques that make
use of random numbers

§ Two typical problems:
1. Problem 1: Generate samples txpsqu from a given probability

distribution ppxq, e.g., for simulation (generative models) or
representations of distributions

2. Problem 2: Compute expectations of functions under that
distribution:

Er f pxqs “
ż

f pxqppxqdx

Example: Means/variances of distributions, marginal
likelihood
Complication: Integral cannot be evaluated analytically
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Approximate Integration

§ Numerical integration (low-dimensional problems)

§ Bayesian quadrature, e.g., O’Hagan (1987, 1991); Rasmussen &
Ghahramani (2003)

§ Variational Bayes, e.g., Jordan et al. (1999)

§ Expectation Propagation, Opper & Winther (2001); Minka (2001)

§ Monte-Carlo Methods, e.g., Gilks et al. (1996), Robert & Casella
(2004), Bishop (2006)
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Problem 2: Monte Carlo Estimation

§ Computing expectations via statistical sampling:

Er f pxqs “
ż

f pxqppxqdx

«
1
S

ÿS

s“1
f pxpsqq, xpsq „ ppxq

§ Making predictions (e.g., Bayesian regression with inputs x and
targets y)

ppy|xq “
ż

ppy|θ, xq ppθq
loomoon

Parameter distribution

dθ

«
1
S

ÿS

s“1
ppy|θpsq, xq , θpsq „ ppθq

§ Key problem: Generating samples from ppxq or ppθq
Need to solve Problem 1
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Properties of Monte Carlo Sampling

Er f pxqs “
ż

f pxqppxqdx

«
1
S

S
ÿ

s“1

f pxpsqq, xpsq „ ppxq

§ Estimator is asymptotically consistent, i.e.,

lim
SÑ8

1
S

S
ÿ

s“1

f pxpsqq “ Er f pxqs ` ε

§ Error ε is normal (Gaussian) and its variance shrinks 9 1{S,
independent of the dimensionality

§ Estimator is unbiased
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Monte Carlo Estimation

Er f pxqs “
ż

f pxqppxqdx

«
1
S

S
ÿ

s“1

f pxpsqq, xpsq „ ppxq

§ How do we get these samples?

Need to solve Problem 1

§ Sampling from simple distributions

§ Sampling from complicated distributions
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Sampling Discrete Values

p = 0.3 p = 0.2 p = 0.5a b c

u = 0.55

§ u „ U r0, 1s, where U is the uniform distribution

§ u “ 0.55 ñ x “ c
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Continuous Variables

p(z)

z

~

More complicated.
Geometric intuition: sample uniformly from the area under the curve
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Rejection Sampling: Setting

p(z)

z

~

§ Assume:
§ Sampling from ppzq is difficult
§ Evaluating p̃pzq “ Zppzq is easy (and Z may be unknown)

§ Find a simpler distribution (proposal distribution) qpzq from
which we can easily draw samples (e.g., Gaussian, Laplace)

§ Find an upper bound kqpzq ě p̃pzq
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Rejection Sampling: Algorithm

z0 z

u0

kq(z0)
kq(z)

p(z)~

acceptance arearejection area

Adapted from PRML (Bishop, 2006)

1. Generate z0 „ qpzq

2. Generate u0 „ U r0, kqpz0qs

3. If u0 ą p̃pz0q, reject the sample. Otherwise, retain z0
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Properties

z0 z

u0

kq(z0)
kq(z)

p(z)~

acceptance arearejection area

Adapted from PRML (Bishop, 2006)

§ Accepted pairs pz, uq are uniformly distributed under the curve
of p̃pzq

§ Marginal probability density of the z-coordiantes of accepted
points must be proportional to p̃pzq

§ Samples are independent samples from ppzq
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Sampling in High Dimensions

Example:

§ ppxq “ N
`

0, σ2
p I
˘

, qpxq “ N
`

0, σ2
q I
˘

where σq “ 1.01σp

§ What is the value of k if x P R1000?

§ qp0q “ 1{p2πσ2
q q

500 For kq ě p we need to set

k ě
pp0q
qp0q

“
pσ2

q q
500

pσ2
pq

500 “ exp
`

1000 ln
σq

σp

˘

“ expp1000 ln 1.01q « 20, 000

§ Acceptance rate is the ratio of the volume under p to the volume
under kq. In our example: 1{k “ 1{20, 000.

§ In high dimensions the factor k is probably huge
Low acceptance rate

§ Finding k is tricky
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Shortcomings

z0 z

u0

kq(z0)
kq(z)

p(z)~

acceptance arearejection area

Adapted from PRML (Bishop, 2006)

§ Finding the upper bound k is tricky

§ In high dimensions the factor k is probably huge

§ Low acceptance rate/high rejection rate of samples
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Importance Sampling

Key idea: Do not throw away all rejected samples, but give them
lower weight by rewriting the integral as an expectation under a
simpler distribution q (proposal distribution):

Epr f pxqs “
ż

f pxqppxqdx

“

ż

f pxqppxq
qpxq
qpxq

dx “
ż

f pxq
ppxq
qpxq

qpxqdx

“ Eq

„

f pxq
ppxq
qpxq



If we choose q in a way that we can easily sample from it, we can
approximate this last expectation by Monte Carlo:

Eq

„

f pxq
ppxq
qpxq



«
1
S

S
ÿ

s“1

f pxpsqq
ppxpsqq
qpxpsqq

“
1
S

S
ÿ

s“1

ws f pxpsqq

, xpsq „ qpxq
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Properties

§ Unbiased if q ą 0 where p ą 0 and if we can evaluate p

§ Breaks down if we do not have enough samples (puts nearly all
weight on a single sample)

Degeneracy (see also Particle Filtering (Thrun et al., 2005))

§ Many draws from proposal density q required, especially in high
dimensions

§ Requires to be able to evaluate true p. Generalization exists for p̃.
This generalization is biased (but consistent).

§ Does not scale to interesting (high-dimensional) problems

Different approach to sample from complicated (high-dimensional)
distributions
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Markov Chain Monte Carlo
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Objective
Generate samples from an unknown target distribution.
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Markov Chains

Key idea: Instead of generating independent samples xp1q, xp2q, . . . ,
use a proposal density q that depends on the previous sample (state)
xptq

Samples are dependent

§ Markov property:
ppxpt`1q|xp1q, . . . , xptqq “ ppxpt`1q|xptqq “ Tpxpt`1q|xptqq only
depends on the previous setting/state of the chain

§ T is called a transition operator

§ Example: Tpxpt`1q|xptqq “ N
`

xpt`1q | xptq, σ2I
˘

§ Samples xp1q, . . . , xptq form a Markov chain

§ Samples xp1q, . . . , xptq are no longer independent, but unbiased
We can still average them
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Behavior of Markov Chains

From Iain Murray’s MCMC Tutorial

Four different behaviors of Markov chains:

§ Diverge (e.g., random walk diffusion where xpt`1q „ N
`

xptq, I
˘

)

§ Converge to an absorbing state

§ Converge to a (deterministic) limit cycle

§ Converge to an equilibrium distribution p˚: Markov chain
remains in a region, bouncing around in a random way
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Converging to an Equilibrium Distribution

§ Remember objective: Explore/sample parameters that may have
generated our data (generate samples from posterior)

Bouncing around in an equilibrium distribution is a good thing

§ Design the Markov chain such that the equilibrium distribution
is the desired distribution ppxq

§ Generate a Markov chain that converges to that equilibrium
distribution (independent of start state)

§ Although successive samples are dependent we can effectively
generate independent samples by running the Markov chain long
enough: Discard most of the samples, retain only every Mth
sample
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Conditions for Converging to an Equilibrium
Distribution

2 Markov chain conditions:

§ Invariance/Stationarity: If you run the chain for a long time and
you are in the equilibrium distribution, you stay in equilibrium if
you take another step.

Self-consistency property

§ Ergodicity: Any state can be reached from any state.
Equilibrium distribution is the same no matter where we start

Property
Ergodic Markov chains only have one equilibrium distribution

Use ergodic and stationary Markov chains to generate samples
from the equilibrium distribution
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Invariance and Detailed Balance

§ Invariance: Each step leaves the distribution p˚ invariant (we
stay in p˚):

p˚px1q “
ÿ

x
Tpx1|xqp˚pxq p˚px1q “

ż

Tpx1|xqp˚pxqdx

Once we sample from p˚, the transition operator will not change
this, i.e., we do not fall back to some funny distribution p ‰ p˚

§ Sufficient condition for p˚ being invariant:
Detailed balance:

p˚pxqTpx1|xq “ p˚px1qTpx|x1q

Also ensures that the Markov chain is reversible
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Metropolis-Hastings

§ Assume that p̃ “ Zp can be evaluated easily (in practice: log p̃)
§ Proposal density qpx1|xptqq depends on last sample xptq.

Example: Gaussian with mean xptq: qpx1|xptqq “ N
`

xptq, Σ
˘

Metropolis-Hastings Algorithm

1. Generate proposal x1 „ qpx1|xptqq

2. If
qpxptq|x1qp̃px1q

qpx1|xptqqp̃pxptqq
ě u , u „ Ur0, 1s

accept the sample xpt`1q “ x1. Otherwise set xpt`1q “ xptq.

§ If proposal distribution is symmetric: Metropolis Algorithm
(Metropolis et al., 1953); Otherwise Metropolis-Hastings
Algorithm (Hastings, 1970)
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Example

From Iain Murray’s MCMC Tutorial
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Step-Size Demo

§ Explore ppxq “ N
`

x | 0, 1
˘

for different step sizes σ.

§ We can only evaluate log p̃pxq “ ´x2{2

§ Proposal distribution q: Gaussian N
`

xpt`1q | xptq, σ2
˘

centered at
the current state for various step sizes σ

§ Expect to explore the space between ´2, 2 with high probability
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Step-Size Demo: Discussion

§ Acceptance rate depends on the step size of the proposal
distribution

Exploration parameter

§ If we do not reject enough, the method does not work.

§ In rejection sampling we do not like rejections, but in MH
rejections tell you where the target distribution is.

§ Theoretical results: in 1D 44%, in higher dimensions about 25%
acceptance rate for good mixing properties

§ Tune the step size
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Properties

§ Samples are correlated
Adaptive rejection sampling generates independent samples

§ Unlike rejection sampling, the previous sample is used to reset
the chain (if a sample was discarded)

§ If q ą 0, we will end up in the equilibrium distribution:
pptqpxq tÑ8

ÝÑ p˚pxq

§ Explore the state space by random walk
May take a while in high dimensions

§ No further catastrophic problems in high dimensions
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Gibbs Sampling (Geman & Geman, 1984)

§ Assumption: ppxq “ ppx1, . . . , xnq is too complicated to draw
samples from directly, but its conditionals ppxi|xziq are tractable
to work with

§ Any distribution “with a name” (Gaussian, Laplace, Bernoulli,
Gamma, Wishart, ...) is easy to sample from (standard libraries)
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Algorithm

Assuming n parameters x1, . . . , xn,
Gibbs sampling samples individual
variables conditioned on all others:

1. xpt`1q
1 „ ppx1|x

ptq
2 , . . . , xptqn q

2. xpt`1q
2 „ ppx2|x

pt`1q
1 , xptq3 , . . . , xptqn q

3.
...

4. xpt`1q
n „ ppxn|x

pt`1q
1 , . . . , xpt`1q

n´1 q z1

z2

L

l

From PRML (Bishop, 2006)
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Gibbs Sampling: Ergodicity

§ ppxq is invariant
§ Ergodicity: Sufficient to show that all conditionals are greater

than 0.
Then any point in x-space can be reached from any other point

(potentially with low probability) in a finite number of steps
involving one update of each of the component variables.
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Finding the Conditionals

1. Write down the (log-) joint distribution ppx1, . . . , xnq

2. For each xi

2.1 Throw away all terms that do not depend on the current sampling
variable

2.2 Pretend this is the density for your variable of interest and all
other variables are fixed. What distribution does the log-density
remind you of?

2.3 That is your conditional sampling density ppxi|xziq

Approximate Inference: Sampling Marc Deisenroth March 1, 2018 31



Example

§ Model:

yi „ N
`

µ, τ´1˘ , µ „ N
`

0, 1
˘

, τ „ Gammap2, 1q

§ Objective: Generate samples from the parameter posterior
ppµ, τ|yq

§ Then

ppy, µ, τq “
n
ź

i“1

ppyi|µ, τqppµqppτq

9τn{2 expp´
τ

2

ÿ

i
pyi ´ µq2q expp´1

2 µ2qτ expp´τq

ppµ|τ, yq “ N
` τ

ř

i yi
1`nτ , p1` nτq´1˘

ppτ|µ, yq “ Gammap2` n
2 , 1` 1

2

ÿ

i
pyi ´ µq2q
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Gibbs Sampling: Properties

§ Gibbs is Metropolis-Hastings with acceptance probability 1:
Sequence of proposal distributions q is defined in terms of
conditional distributions of the joint ppxq

Converge to equilibrium distribution: pptqpxq tÑ8
ÝÑ ppxq

Exploration by random walk behavior can be slow

§ No adjustable parameters (e.g., step size)
§ Applicability depends on how easy it is to draw samples from

the conditionals
§ May not work well if the variables are correlated
§ Statistical software derives the conditionals of the model, and it

works out how to do the updates: STAN1, WinBUGS2, JAGS3

1http://mc-stan.org/
2http://www.mrc-bsu.cam.ac.uk/software/bugs/
3http://mcmc-jags.sourceforge.net/
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Flavors of Gibbs Sampling

§ Collapsed Gibbs sampler: Analytically integrate out some
parameters and sample the rest.

Tends to be much more efficient with smaller variance
(see Rao-Blackwellization in the state estimation literature)

§ Block-Gibbs sampler: Sample groups of variables at a time
instead of single-site updating
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Slice Sampling (Neal, 2003)

p(z)

z

~

§ Idea: Sample point (random
walk) uniformly under the curve
p̃pxq

§ Introduce additional variable u, define joint p̂px, uq:

p̂px, uq “

#

1{Zp if 0 ď u ď p̃pxq
0 otherwise

, Zp “

ż

p̃pxqdx

§ The marginal distribution over x is then
ż

p̂px, uqdu “
ż p̃pxq

0
1{Zpdu “ p̃pxq{Zp “ ppxq

Obtain samples from unknown ppxq by sampling from p̂px, uq
and then ignore u values

§ Gibbs sampling: Update one variable at a time
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Slice Sampling Algorithm

p(x)

x(t)

u

x

~ p(x)

x(t)

uxmin xmax

~

x
Adapted from PRML (Bishop, 2006)

§ Repeat the following steps:
1. Draw u|xptq „ U r0, p̃pxqs
2. Draw xpt`1q|u „ U rtx : p̃pxq ą uus slice

§ In practice, we sample xpt`1q|u uniformly from an interval
rxmin, xmaxs around xptq.

§ The interval is found adaptively (see Neal (2003) for details)
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Relation to other Sampling Methods

Similar to:

§ Metropolis: Just need to be able to evaluate p̃pxq
More robust to the choice of parameters (e.g., step size is
automatically adapted)

§ Gibbs: 1-dimensional transitions in state space
No longer required that we can easily sample from 1-D
conditionals

§ Rejection: Asymptotically draw samples from the volume under
the curve described by p̃
No upper-bounding of p̃ required
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Properties

§ Slice sampling can be applied to multivariate distributions by
repeatedly sampling each variable/dimension in turn (similar to
Gibbs sampling).

See (Neal, 2003; Murray et al., 2010) for more details

§ This requires to compute a function that is proportional to
ppxi|xziq for all variables xi.

§ No rejections

§ Adaptive step sizes

§ Easy to implement

§ Broadly applicable
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MCMC: Correlated Samples

§ Samples from the Markov chain before the equilibrium
distribution is reached should be discarded (burn-in phase)

§ MCMC generates dependent samples
Introduces additional variance in the Monte-Carlo estimator

1
S

S
ÿ

s“1

f pxpsqq , xpsq „ ppxq

due to correlation of samples
§ If we want independent samples, take only every Kth sample

(thinning)
Does not decrease the efficiency of the sampler, but reduces
memory footprint

§ Autocorrelation is an indicator for choosing K
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MCMC Diagnostics: Trace Plots
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Figure from Murphy (2012)

§ Mixing time: Amount of time it takes the Markov chain to
converge to the stationary distribution and forget its initial state.

§ Trace plots: Run multiple chains from very different starting
points, plot the samples of the variables of interest. If the chain
has mixed, the trace plots should converge to the same
distribution.
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