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Reading Material

§ Brochu et al.: A Tutorial on Bayesian Optimization of Expensive Cost
Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning, arXiv:1012.2599, 2012

§ Shahriari et al.: Taking the Human Out of the Loop: A Review of
Bayesian Optimization, Proceedings of the IEEE, 2016
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Machine Learning Meta-Challenges

§ Machine learning models are getting more and more complicated
Usually more parameters (e.g., deep neural networks)

§ Non-convex optimization methods have many parameters to
tune

Generally hard to apply modern techniques or reproduce results

Automate the selection of critical hyper-parameters
(see also: Automated Machine Learning (AutoML))
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Example: Deep Neural Networks

Huge interest in large neural networks

§ When well-tuned, very successful for visual object identification,
speech recognition, computational biology, ...

§ Huge investments by Google, Facebook, Microsoft, etc.

§ Many choices: number of layers, weight regularization, layer
size, which nonlinearity, batch size, learning rate schedule,
stopping conditions
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Example: Online Latent Dirichlet Allocation

§ Hoffman et al. (2010): Approximate inference for large-scale text
analysis with Latent Dirichlet Allocation

§ Good empirical results when well tuned

§ Hyper-parameters tricky to set: Dirichlet parameters, number of
topics, learning rate schedule, batch size, vocabulary size, ...
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Example: Classification of DNA Sequences

§ Objective: Predict which DNA sequences will bind with which
proteins.

§ Miller et al. (2012): Latent Structural Support Vector Machine

§ Hyper-parameters: margin/slack parameter, entropy parameter,
convergence criterion
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Search for Good Hyper-parameters

§ Define an objective function
§ Usually, we care about generalization performance.
§ Cross validation to measure parameter quality

§ Standard search procedures:
§ Grid search
§ Random search (very simple, works surprisingly well)
§ Manual tuning
§ Black magic

§ Painful:
§ Training may be very expensive (e.g., time or money)
§ Many training cycles
§ Possibly noisy
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Alternative Approach: Bayesian Optimization

Setting
Globally optimize an objective function that is expensive to evaluate
(e.g., cross-validation error for a massive neural network)

§ Build a probabilistic proxy model for the objective using
outcomes of past experiments as training data

§ The proxy model is much cheaper to evaluate than the original
objective

§ Optimize cheap proxy function to determine where to evaluate
the true objective next

§ Standard proxy: Gaussian process
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Setting (2)

§ Objective: Find global minimum of objective function g:

x˚ “ arg min
x

gpxq

§ We can evaluate the objective g pointwise, but do not have an
easy functional form or gradients; observations may be noisy

§ Evaluating g is costly (e.g., train a massive deep network)
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Key Steps

§ To avoid evaluating g an excessive number of times, approximate
it using a proxy function g̃ (which is cheap to evaluate)

§ Find a global optimum g̃px˚q of proxy function g̃

§ Evaluate true objective g at x˚
§ Overall: Evaluate g only once

§ Works well if g̃ « g.

§ Usually not the case Repeat this cycle and keep updating g̃
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Bayesian Optimization: Illustration
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Choosing the Next Point to Evaluate the True Objective:
Acquisition Functions

Bayesian Optimization Marc Deisenroth @AIMS, Rwanda, October 18, 2018 12



Using Uncertainty in Global Optimization
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§ Find a good (global) optimum
Need to get out of local optima

§ Extrapolate from collected knowledge
§ GP gives us closed-form means and variances

Trade off exploration and exploitation
§ Exploration: Seek places with high variance
§ Exploitation: Seek places with low mean

§ Acquisition function α trades off exploration and exploitation for
our proxy optimization
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Key Steps (Pseudo-Code)

1: Init: Data set D0 “ tX0, y0u

2: for iterations t “ 1, 2, ... do
3: Update GP using data Dt´1
4: Select xt “ arg maxx αpxq by optimizing acquisition function
5: Query true objective g at xt
6: Augment data set Dt “ Dt´1 Y tpxt, ytqu

7: end for
8: Return best input in data set: x˚ “ arg minx ypxq
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Where to Evaluate Next?
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Where to Evaluate Next to Improve Most?
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§ Upper panel: Samples from a probabilistic proxy g̃

§ Lower panel: Corresponding expected improvement over the
best solution so far (black cross)

Evaluate g at the maximum of the expected improvement
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Closed-Form Acquisition Functions

§ For all x P RD the GP posterior gives a predictive mean µpxq
variance σ2pxq of gpxq

§ Define
γpxq “

gpxbestq ´ µpxq
σpxq

§ Probability of Improvement (Kushner 1964):

αPIpxq “ Φpγpxqq

§ Expected Improvement (Mockus 1978):

αEIpxq “ σpxq
`

γpxqΦpγpxqq `N
`

γpxq | 0, 1
˘˘

§ GP Lower Confidence Bound (Srinivas et al., 2010):

αLCBpxq “ ´pµpxq ´ κσpxqq , κ ą 0
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Probability of Improvement (1)
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§ Idea: Determine the
probability that x˚ leads to a
better function value than the
currently best one gpxbestq

§ Sampling-based setting:
Sample N functions gi; at
every input x compute a
Monte-Carlo estimate

αPIpxq “ ppgpxq ă gpxbestqq «
1
N

ÿN

i“1
δ
`

gipxq ă gpxbestq
˘

Can lead to continued exploitation in an ε-region around xbest.

Introduce a “slack variable” ξ for more aggressive exploration
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Probability of Improvement (2)
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§ Look at a minimum improvement of ξ ą 0:

αPIpxq “ ppgpxq ă gpxbestq´ξ q «
1
N

ÿN

i“1
δ
`

gipxq ă gpxbestq´ξ
˘

§ If f „ GP and ppgpxqq “ N
`

µpxq, σpxq
˘

:

αPIpxq “ Φpγpx, ξqq , γpx, ξq “
gpxbestq´ξ ´ µpxq

σpxq
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Expected Improvement

§ Idea: Quantify the amount of
improvement

§ Sampling-based scenario,
where gi „ pp f q:

αEIpxq “ Ermaxt0, gpxbestq ´ gpxqus

«
1
N

N
ÿ

i“1

maxt0, gpxbestq ´ gipxqu
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§ If f „ GP, we have a closed-form expression:

αEIpxq “ σpxq
`

γpxqΦpγpxqq `N
`

γpxq | 0, 1
˘˘

§ Slack-variable approach also possible (similar to PI)
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GP-Lower Confidence Bound (1)
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§ Use the predictive mean µpxq and variance σ2pxq of the GP
prediction directly for targeted exploration by means of the
acquisition function

αLCBpxtq “ ´
`

µpxtq ´
?

κσpxtq
˘
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GP-Lower Confidence Bound (2)
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§ More generally, we can get regret bounds for iteration-dependent
κ (Srinivas et al., 2010)

αLCBpxtq “ ´
`

µpxtq ´
?

κtσpxtq
˘

where κt P Oplog tq grows with the iteration t
Continue exploration

Bayesian Optimization Marc Deisenroth @AIMS, Rwanda, October 18, 2018 22



Optimizing the Acquisition Function

§ Optimizing the acquisition function requires us to run a global
optimizer inside Bayesian optimization

§ What have we gained?

§ Evaluating the acquisition function is cheap compared to
evaluating the true objective

We can afford evaluating it many times
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Limitations

§ Getting the function model (e.g., covariance function) wrong can
be catastrophic

§ Limited scalability in the number of dimensions and/or
evaluations of the true objective function
Why?
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Poor Model Choice

§ Covariance function selection is crucial for good performance
Choose a sufficiently flexible and adaptive kernel, e.g., Matérn

(but not the squared exponential (Gaussian))

§ Nice side-effect of Matérn: Exploration is more encouraged than
with the Gaussian kernel
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Choosing Covariance Functions

§ Structured SVM for Protein Motif Finding (Miller et al., 2012)
§ Optimize hyper-parameters of SSVM using BO (Snoek et al.,

2012)

0 10 20 30 40 50 60 70 80 90 100
0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

M
in

 F
u

n
c
ti
o
n

 V
a
lu

e

Function evaluations

 

 

Matern 52 ARD

SqExp

SqExp ARD

Matern 32 ARD

Figure: Figure from Snoek et al. (2012)
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Gaussian Process Hyper-Parameters

§ Empirical Bayes (maximize the marginal likelihood) can fail
horribly, especially in the early stages of Bayesian optimization
when we have only a few data points

§ Solution: Integrate out the GP hyper-parameters θ by Markov
Chain Monte Carlo (MCMC) sampling (e.g., slice sampling)

§ Look at integrated acquisition function

αpxq “ Eθrαpx, θqs “

ż

αpx, θqppθqdθ

«
1
K

K
ÿ

k“1

αpx, θpkqq , θpkq „ ppθ|Xn, ynq
looooomooooon

hyper-parameter posterior
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Integrating out GP Hyper-parameters

§ Online LDA (Hoffman et al., 2010) for topic modeling
§ Two critical hyper-parameters that control the learning rate

learned by BO (Snoek et al., 2012)
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Figure: Figure from Snoek et al. (2012)
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Robots That Learn to Recover from Damage

Cully et al. (2015)
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Application Example: Controller Learning in
Robotics (Calandra et al., 2015)

§ Fragile bipedal robot
Only few experiments feasible

§ Maximize robustness and walking speed

§ 4 motors:
2 actuated hips + 2 actuated knees

§ Controller implemented as a
finite-state-machine (8 parameters)

§ Good parameters found after 80–100
experiments

§ Substantial speed-up compared to
manual parameter search

Calandra et al. (2015)
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Comparison

Number of evaluations
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§ Squared exponential covariance function

§ Learned GP hyper-parameters (no MCMC for integrating them
out)
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Further Topics in BO

§ Entropy-based acquisition functions: Directly describe the
distribution over the best input location (Hennig & Schuler, 2012;
Hernández-Lobato et al., 2014)

§ Non-myopic Bayesian optimization (e.g., Osborne et al., 2009)
§ High-dimensional optimization (e.g., Wang et al., 2016)
§ Large-scale Bayesian optimization (Hutter et al., 2014)
§ Efficient optimization of acquisition functions (Wilson et al., 2018)
§ Non-GP Bayesian optimization (Hutter et al., 2014; Snoek et al.,

2015)
§ Constraints (e.g., Gelbart et al., 2014)
§ Automated machine learning (e.g., Feurer et al., 2015)
§ Multi-tasking, parallelizing, resource allocation, ... (e.g., Swersky

et al., 2014; Snoek et al., 2012; Wilson et al., 2018)
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Software

§ BayesOpt https://bitbucket.org/rmcantin/bayesopt/
(Martinez-Cantin, 2014)

§ Spearmint https://github.com/HIPS/Spearmint

§ Pybo https://github.com/mwhoffman/pybo (Hoffman &
Shariari)

§ GPyOpt https://github.com/SheffieldML/GPyOpt (Gonzalez
et al.)

§ Matlab toolbox (bayesopt)
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Summary

§ Global optimization of black-box functions, which are expensive
to evaluate Meta-challenges in machine learning, Auto-ML

§ Use a probabilistic proxy model that is cheap to evaluate and use
this to suggest next experiments

§ Acquisition function trades of exploration and exploitation
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