
INFORMATION THEORY, INFERENCE, AND

BRAIN NETWORKS

Pedro A.M. Mediano

pmediano@ic.ac.uk Imperial College, London



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

MOTIVATION



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

BEFORE WE START...

I Whadda hell are ya doing here?
I Because I like things like these...

I My goal is the scientific study of the emergence of
distributed intelligence.
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THE MISSING PIECE IN PDP
I PDP says that computation can happen, but it doesn’t

explain how.

I Challenge: how can we describe the interaction between
many neurons when performing a computation?

Information theory.
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THE BASICS
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Very important result/definition.

Problem of interest.

Exercise. (Some optional, all recommended!)
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WHAT IS INFORMATION?
In earlier times, information was identified with the objects that carried it.

Later, information was carried by waves (sound, light, electromagnetic).
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WHAT IS INFORMATION?

Also true for neural networks!

Rosenblatt holding the
weights of a perceptron.
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WHAT IS INFORMATION?

Information needs a communication protocol: a priori
agreement between sender and receiver.
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WHAT IS INFORMATION?
All developed in the seminal 1948 paper,

A Mathematical Theory of Communication

By Claude Shannon.
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GOAL OF INFORMATION THEORY

How can we achieve optimal communication through a
noisy channel?
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PLAN FOR THESE LECTURES

1. Entropy and coding.

2. KL divergence and mutual information.

3. Links with statistics and maximum likelihood.

4. Research example.

11



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

ENCODING EXAMPLE

Let’s find the shortest encoding for this message:

I Naive code:

00 01 10 11

0010000111000001

I Huffman code:

1 01 001 000

10011010001101

Symbol Probability
x p(x)

1/2
1/4
1/8
1/8
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ENCODING EXAMPLE

I Average code length: ∑
x

p(x)L(x)

I Key idea: frequent symbols have shorter sequences.

I In particular, proportional to − log2 p(x).
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ENTROPY

Minimal description length for p(x) messages in bits:

H(X ) = −
∑

x

p(x) log2 p(x)

What’s the entropy of a random fair coin?

Discuss with your neighbour.
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ENTROPY

Bernoulli distribution: H(p) = −p log2 p − (1− p) log2(1− p)
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Entropy is a measure of uncertainty or randomness.
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ENTROPY

I Rank these distributions from highest to lowest entropy.
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0
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0
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JOINT ENTROPY

In addition, we can define these two quantities:

I Joint entropy:

H(X ,Y ) = −
∑
x ,y

p(x , y) log p(x , y)

I Conditional entropy:

H(X |Y ) = −
∑
x ,y

p(x , y) log p(x |y)
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KULLBACK-LEIBLER DIVERGENCE

What happens if we use the wrong code?

I Previous code:

1 01 001 000

0000010010100000100101

I New optimal code:

0 01 1 00

001101001101

Symbol Assumed Real
x q(x) p(x)

1/2 0
1/4 1/4
1/8 1/2
1/8 1/4
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KULLBACK-LEIBLER DIVERGENCE

Extra cost incurred if we use the wrong code.

DKL(p‖q) =
∑

x

p(x) log
p(x)

q(x)

= −
∑

x

p(x) log2 q(x)︸ ︷︷ ︸
Actual message length

− −
∑

x

p(x) log2 p(x)︸ ︷︷ ︸
Optimal message length

Prove that DKL(p‖q) = 0 iff p = q.
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KULLBACK-LEIBLER DIVERGENCE
PROPERTIES

I KL divergence is non-negative:

DKL(p‖q) ≥ 0

I The equality holds when p = q:

DKL(p‖q) = 0 iff p = q

I It is not symmetric:

DKL(p‖q) 6= DKL(q‖p)
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KULLBACK-LEIBLER DIVERGENCE

I Calculate these KL divergences:

DKL(P3‖P1) DKL(P2‖P4) DKL(P4‖P2) DKL(P3‖P4)

A B C D
0

1

P1

A B C D
0

1

P2

A B C D
0

1

P3

A B C D
0

1

P4
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SENDING INFORMATION
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THE NOISY TYPEWRITER

I Input X is uniform distribution on N symbols.

I Need log2 N bits to encode.

I Symbols will be mixed by channel noise!

I Can only send one of N/2 symbols
without loss.

I Rate of transmission to Y is

H(Y )− H(Y |X ) = log2 N − 1

= log2
N
2

A

B

C

D

A

B

C

D

...
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MUTUAL INFORMATION

How much does knowing X tell you about Y.

I(X ; Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
= H(Y )︸ ︷︷ ︸
Uncertainty

about Y

− H(Y |X )︸ ︷︷ ︸
Uncertainty

about Y
given X

What’s the MI of the binary symmetric channel?

Discuss with your neighbour.
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Y
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MUTUAL INFORMATION

I MI is maximal when X and Y are identical and minimal when
they are independent.
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MI is a generalised measure of correlation.
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MUTUAL INFORMATION
PROPERTIES

I MI is symmetric:

I(X ; Y ) = I(Y ; X )

I MI is non-negative:

I(X ; Y ) ≥ 0 , I(X ; Y ) = 0 iff X |= Y

I MI is a KL divergence:

I(X ; Y ) = DKL (p(x , y)‖p(x)p(y))
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RECAP

X Entropy measures uncertainty or randomness.

X KL divergence measures differences between distributions.

X MI measures correlation between variables.
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MORE EXAMPLES

Calculate the following:

1. H(X )

2. H(X ,Y )

3. I(X ; Y )

4. DKL(p(x)‖p(y))

p(x , y) x = 0 x = 1

y = 0 0.1 0
y = 1 0.1 0.3
y = 2 0.3 0.2
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CONTINUOUS VARIABLES
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CONTINUOUS VARIABLES

So far, we’ve used discrete variables only...

But in ML we use RD!

Can we extend these definitions to continuous
variables?
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ENTROPY IN R1

I We have a variable X ∈ R with pdf f (x).
I We use bins of width ∆ to get a discrete variable X ∆ with

pi =

∫ (i+1)∆

i∆
f (x)dx = f (xi)∆

Now we take H(X ∆) as ∆→ 0:

H(X ∆) = −
∑

pi log pi

= −
∑

f (xi)∆ log(f (xi)∆)

= −
∑

∆f (xi) log f (xi)︸ ︷︷ ︸
Riemann integral

− log ∆︸ ︷︷ ︸
Divergent term
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DIFFERENTIAL ENTROPY

Ignoring the log ∆, we get the formula for differential entropy:

H(X ) = −
∫

f (x) log f (x)dx

Differential entropy is not a “real” entropy!
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MUTUAL INFORMATION IN R1

Magically, for MI the divergent terms cancel out, and...

I Continuous MI is actually a real MI!

Summary:

X MI in continuous variables is interpretable.

7 Entropy in continuous variables is not.
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MI INVARIANCE

MI is invariant to invertible mappings.

I(U; V ) = I(X ; Y ) where U = f (X ),V = g(Y )

if f and g are smooth and invertible.

Prove this result.

Tip: Use the fact that densities transform as p(u, v) = |J|p(x , y), with
J the appropriate Jacobian, and the Jacobian is block-diagonal.

33



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

ENTROPY IN GAUSSIAN DISTRIBUTIONS

Let’s calculate the entropy of a Gaussian p(x) = N (x |µ,Σ):

H(X ) = −
∫ +∞

−∞
N (x |µ,Σ) logN (x |µ,Σ)dx

=
1
2
E[log |2πΣ|] +

1
2
E[(x − µ)>Σ−1(x − µ)]

=
1
2

log |2πΣ|+ 1
2
E[(x − µ)>Σ−1(x − µ)]
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ENTROPY IN GAUSSIAN DISTRIBUTIONS

For the second term:

E
[
tr
(

(x − µ)>Σ−1(x − µ)
)]

= tr
(
Σ−1E

[
(x − µ)(x − µ)>

])
= tr

(
Σ−1Σ

)
= D

Overall:

H(X ) =
1
2

log |2πeΣ|

Information measures have analytical solutions for
Gaussian distributions.
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INFORMATION IN GAUSSIAN DISTRIBUTIONS

Given that the entropy of a Gaussian N (x |µ,Σ) is:

H(X ) =
1
2

log |2πeΣ|

What’s the mutual information between two Gaussians?

Discuss with your neighbour.
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MI IN GAUSSIAN DISTRIBUTIONS

I(X ; Y ) = −1
2

log(1− ρ2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Mutual information

Correlation ρ
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KL IN GAUSSIAN DISTRIBUTIONS

DKL(p1(x)‖p2(x)) = log
σ2

σ1
+
σ2

1 + (µ1 − µ2)2

σ2
2

− 1
2

0 0.2 0.4 0.6 0.8 1
0

2

4

6 KL divergence

∆µ

∆µ

∆µ

38



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

LOTS OF OTHER STUFF!

I Data processing inequalities.

I Rate-distortion theories.

I Error-correcting codes.
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STATISTICS
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All that encoding was ok, but...

What’s the point?

Statistical interpretation of
information theory
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ENTROPY AND LIKELIHOOD

I Assume we have data x i ∈ RD generated from p∗(x).

I Take family of models p ∈ P = {p(·|θ) : θ ∈ RM}.

I Assume there exists a θ∗ such that p(x |θ∗) = p∗(x).

I Consider maximum-likelihood estimator
θML = argmax

θ
E[p(x |θ)]. Then:

E[log p(x |θML)] = E[log p(x |θ∗)] = −H[p∗(x)]

Entropy is the negative log-likelihood of the best model!
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ENTROPY AND LIKELIHOOD

Sketch of a proof:

DKL(p∗(x)‖p(x |θ)) ≥ 0
⇓

−E[log p(x |θ)] ≥ −E[log p∗(x)]
⇓

−E[log p(x |θ)] ≥ H[p∗(x)]

1. If p∗ ∈ P, the maximum is achieved iff p(·|θ) = p∗(·) and
therefore E[log p(x |θML)] = −H[p∗(x)].

2. If p∗ /∈ P, the margin between the MLE and the true model
is DKL(p∗(x)‖p(x |θML)) > 0.
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ENTROPY AND LIKELIHOOD

I Another derivation:

DKL(p∗(x)‖p(x |θ)) = −H[p∗(x)]︸ ︷︷ ︸
Doesn′t depend on θ

− E[log p(x |θ)]︸ ︷︷ ︸
Likelihood

argmin
θ

DKL(p∗(x)‖p(x |θ)) = argmax
θ

E[log p(x |θ)]

I To show that E[log p(x |θ)] is the normal likelihood, consider
dataset x1, . . . ,xN ∼ p∗(x):

E[log p(x |θ)] =

∫
p∗(x) log p(x |θ)dx = 1

N

N∑
i=1

log p(x i |θ)

Sampling
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ENTROPY AND LIKELIHOOD

Maximising likelihood is equivalent to minimising KL!

θML = argmax
θ

E[p(x |θ)]

θML = argmin
θ

DKL(p∗(x)‖p(x |θ))
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MODEL SELECTION

Are variables X and Y statistically independent?

X Y

M1:M1 (full):

p(x , y)

X Y

M2:M2 (restricted):

p(x) p(y)

I(X ; Y ) =

∫
dx dy p(x , y) log

p(y |x)

p(y)

Full model
Restricted

model

I(X ; Y ) > 0 iff M1 explains the data better than M2.
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MUTUAL INFORMATION AND CORRELATION

In non-Gaussian distributions, MI acts as a generalised correlation.

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

ρ =

ρ =

ρ =
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RECAP

X Entropy functionals (MI, KL) arise from optimal
communication principles.

X Alternative interpretation in terms of likelihood.

X All that’s left is specifying a model p(x |θ).

→ Sampling and density estimation.

47



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

NEURODYNAMICS
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PSYCHEDELICS AND HALLUCINOGENICS

48
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PSYCHEDELICS AND HALLUCINOGENICS

I Psychedelics affect the serotonergic system.

I Safest among common recreational drugs.

(Nutt et al. 2010)
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PSYCHEDELIC PHENOMENOLOGY

I Onset of audiovisual hallucinations.
“With eyes closed, I saw geometric patterns.”

I Distortion of self models.
“I experienced a disintegration of my ’self’ or ’ego’.”

I Increased cognitive flexibility.
“My thoughts wandered freely.”

How does LSD alter information processing in the brain?
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THE DATA

I High-frequency magnetoencephalographic (MEG) data.
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BRAIN ENTROPY

I Entropy estimator for sequential
data known as Lempel-Ziv.

I Calculate average entropy of
cortical surface.

Under LSD, brain has much
higher entropy than usual.

38 CHAPTER 3. RESULTS ON MEG DATA

analysis for ACE, SCE, and LZc, grouped by recording modality. In line with our expectations,

the psychedelic state is consistently ranked higher in complexity by all the measures and in all the

recording modalities. Asterisks indicate statistical significance of p < 0.001. Statistical comparisons

were performed with the non-parametric Mann-Whitney U test, computed using Scipy, (Jones et al.,

2001). Whenever the number of observations was below 20, we used a Monte Carlo permutation test.

Inspecting Fig. 3.2, we see that all measures delineate a progression from left to right, in which

closed eyes and music listening have lower mean values and wider distributions, whereas the opposite

is true for the open eyes and video modalities. Interestingly, this succession is paralleled by the

amount of outward-focus of each state. While a conscious scene with closed eyes is predominantly

centered inwardly, open eyes imply a shift in cognition towards the outer world, which becomes even

greater when attention is focused on an outside event such as a video. Statistical tests support

the conclusion that closed eyes states and open eyes states pertain to slightly di↵erent complexity

regimes, with the di↵erence being statistically verified across measures and for both the placebo

and LSD conditions. On the other hand, di↵erences within groups are statistically significant for

the two open eyes states, but not for the closed eyes states. This suggests that the element of

focused attention that distinguishes the video modality from the inattentive open eyes state creates

a stronger demarcation than the introduction of music to the closed eyes state, which does not induce

a significant change. Intriguingly, this results seems to suggests that these measures are able to sense

subtle changes in the quality of conscious experience.

Figure 3.2: Spontaneous complexity modes grouped by recording modality. Asterisks indicate p <

0.001. A drastic increase in complexity under LSD is observed across all measures and modalities.
Interestingly, inward and outward focused states appear to have slightly di↵erent complexity profiles.

It is known that in normal waking consciousness the activity of default mode network (DMN) and

of the task-positive network (TPN) exclude each other, such that when a subject becomes engaged in a

task the DMN is dismantled and superseded by the TPN. A recent study on psilocybin (a psychedelic

compound closely related to LSD) has shown that this mutual exclusivity is reduced under the e↵ect

of the drug, with the DMN and TPN becoming increasingly functionally interconnected (Carhart-

Harris et al., 2013). Intriguingly, the same phenomenon is observed in psychotic patients, as they

become more and more unable to separate the real world from their internal, and during meditation,

a mental state which strives for unity of the self and the outside world. This has lead the authors to

(Marchesi & Mediano 2016)
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Entropy is a dimensionless quantity that is used for measuring uncertainty about the state
of a system but it can also imply physical qualities, where high entropy is synonymous
with high disorder. Entropy is applied here in the context of states of consciousness
and their associated neurodynamics, with a particular focus on the psychedelic state.
The psychedelic state is considered an exemplar of a primitive or primary state of
consciousness that preceded the development of modern, adult, human, normal waking
consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug,
it is argued that the defining feature of “primary states” is elevated entropy in certain
aspects of brain function, such as the repertoire of functional connectivity motifs that
form and fragment across time. Indeed, since there is a greater repertoire of connectivity
motifs in the psychedelic state than in normal waking consciousness, this implies that
primary states may exhibit “criticality,” i.e., the property of being poised at a “critical”
point in a transition zone between order and disorder where certain phenomena such
as power-law scaling appear. Moreover, if primary states are critical, then this suggests
that entropy is suppressed in normal waking consciousness, meaning that the brain
operates just below criticality. It is argued that this entropy suppression furnishes normal
waking consciousness with a constrained quality and associated metacognitive functions,
including reality-testing and self-awareness. It is also proposed that entry into primary
states depends on a collapse of the normally highly organized activity within the default-
mode network (DMN) and a decoupling between the DMN and the medial temporal lobes
(which are normally significantly coupled). These hypotheses can be tested by examining
brain activity and associated cognition in other candidate primary states such as rapid eye
movement (REM) sleep and early psychosis and comparing these with non-primary states
such as normal waking consciousness and the anaesthetized state.

Keywords: serotonin, default mode network, criticality, entropy, 5-HT2A receptor, metastability, consciousness,

REM sleep

INTRODUCTION
The main aim of this paper is to introduce a new theory of
conscious states that incorporates principles of physics, neurobi-
ology, and psychoanalysis. The theory is intended to assist our
understanding of the makeup of the human mind, addressing
such questions as: “how does the normal waking consciousness
of healthy adult humans relate to other states of consciousness?”
“how does the human brain maintain its normal state of waking
consciousness?” and “what happens to the human brain’s func-
tionality when non-ordinary states such as rapid eye movement
(REM) sleep/dreaming, early psychosis and the psychedelic state
occur?”

At its core, the entropic brain hypothesis proposes that
the quality of any conscious state depends on the system’s

entropy1 measured via key parameters of brain function. Entropy
is a powerful explanatory tool for cognitive neuroscience since it
provides a quantitative index of a dynamic system’s randomness
or disorder while simultaneously describing its informational
character, i.e., our uncertainty about the system’s state if we were
to sample it at any given time-point. When applied in the context
of the brain, this allows us to make a translation between mecha-
nistic and qualitative properties. Thus, according to this principle,

1Entropy in its purest information theoretical sense is a dimensionless quan-
tity that is used for measuring uncertainty or ignorance about the state of
a system. By implication, entropy/uncertainty is greater the more random a
system is. Thus, entropy is most strictly a measure of uncertainty but it also
reflects the degree of randomness or disorder in a system (Ben-Naim, 2012).

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 20 | 1

HUMAN NEUROSCIENCE
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CONNECTIVITY INFERENCE

Y1

X1

Y2

X2

Y3

X3

Y4

X4

Y5

X5

M1:

· · · · · ·

Y1

X1

Y2

X2

Y3

X3

Y4

X4

Y5

X5

M2:

· · · · · ·

I Evidence for connected model M1 over M2 is:

I(Xt ; Yt+1|Yt ) =

∫
p(xt , yt , yt+1) log

p(yt+1|yt , xt )

p(yt+1|yt )
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CONNECTIVITY INFERENCE

Two problems with this:
1. Compute integral

∫
p(wt )f (wt )dwt , where wt = {xt , yt , yt+1}.

2. Evaluate likelihoods p(yt+1|yt , xt ),p(yt+1|yt ).

Solution 1: sampling!

I(Xt ; Yt+1|Yt ) =

∫
p(wt ) log

p(yt+1|yt , xt )

p(yt+1|yt )
dwt

≈ 1
T

T∑
i=1

log
p(y i

t+1|y i
t , x

i
t )

p(y i
t+1|y i

t )

Solution 2: probabilistic regression!

1. Predict yt+1 from yt .

2. Predict yt+1 from both yt and xt .
Check if (2) is
better than (1)
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BRAIN NETWORKS

Algorithm: Iterative network inference.
Data: Set of brain regions R
for Y ∈ R do

Initialise pa(Y ) = Ø

while maxX I(Xt ; Yt+1|Yt ,pa(Y )t ) > 0 do
pa(Y )← pa(Y ) ∪ argmaxX I(Xt ; Yt+1|Yt ,pa(Y )t )

end
end
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Figure 3.8: Evolution over time of reconstructed directed information networks comparing placebo and LSD for a
randomly chosen subject. Connections originating in the frontal and occipital regions are highlighted in red and
blue, respectively. The number of connections originating in posterior areas appears to increase under LSD.

Figure 3.9: Analogous to Fig. 3.8 for a second randomly chosen patient.

3.4 Limitations and future directions

Although encouraging, these results are in a sense only preliminary. In fact, network inference using

the same set of 10 gradiometers was limited due to time constraint to the evaluation of approximately

8 networks per patient. While we observe the same trend in network dissimilarity found for the

randomly chosen sensors, the amount of data collected is insu�cient to strongly a�rm statistical

significance.

For the analysis using randomly chosen sets of 8 networks, again the number of networks we

computed was relatively small. Importantly, network dissimilarity was studied on networks separated

in time by approximately 20s, which is a very long time for the time scales of neural computation.

The rationale for this was to consider the full span of the MEG recording, and avoid the detection

of spurious localized changes. However, we suspect that more drastic changes in the repertoire of

configurations could be detected by focusing on much smaller time scales, for instance by inferring

networks in contiguous 1s intervals. This might explain why the observed changes were less drastic

compared to the results using spontaneous complexity measures.
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GLOBAL CONNECTIVITY

I Count total number of significant connections.

Under LSD, the brain is more interconnected than usual.

3.4. LIMITATIONS AND FUTURE DIRECTIONS 45

The limited time scope of this project also limited our ability to address a number of related

questions, leaving a miryad of avenues open for future work. Firstly, this analysis should be extended

to include all modalities (open and closed eyes, music, and video). Of particular interest would be to

verify whether the network inference approach correlates with the results obtained using spontaneous

complexity measures. The first question would be whether di↵erence in complexity values between

modalities, and the reduced di↵erence under LSD, are paralleled by changes in network dynamics.

A second question is to what extent the regional complexity profiles correlate with the variability in

the set of connections of network nodes in the same areas.

The neuroscientific relevance of the present approach could further be enhanced by considering

source-localized data, and considering networks between relevant brain structure. In this respect, the

hypothesis of increased coupling between DMN and TPN advanced by Carhart-Harris et al. (2013)

could be verified, with the additional advantage of revealing the directionality of the interactions.

localize, say that this method has the potential to answer the question

Figure 3.10: Number of inferred connections averaged over subjects. Error bars indicate
the standard error of the mean. Top panel: for every subject, the number of inferred
links is increased under LSD. Middle panel: projections with frontal origin are not found
to change substantially in either direction. Bottom panel: links with occipital origin are
found to increase more markedly, indicating that they acquire a more prominent role in
the information landscape.
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(Marchesi & Mediano 2016)
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TRANSIENT NETWORK DISSIMILARITY

I Build transient networks Nt0 ,Nt1 , . . .

I How quickly do they change?

I Transient Network Dissimilarity (TND),
average number of “rewirings:”

E
[
|Nti − Nti+1 |

]
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analysis. In fact, we are not interested in detecting every single connection, but rather in mapping

the main informational dependencies that control the computation in the network. Results from this

section will show that this is indeed achieved, .

For each subject condition, 8 gradiometers were selected randomly, to avoid sensor-specific e↵ects

and render the analysis more robust. Selection was carried out using k-means to ensure uniform

spacing of the gradiometers across the scalp. Then, time windows of 1s were selected at approximately

20s from each other, for a total of 20 time windows per patient-condition. For each time window,

the network structure was inferred testing for significance against 200 surrogates with a threshold of

0.05 (with Bonferroni correction, so e↵ectively 0.0009). Self- and source-embedding were carried out

using AIS and TE maximization, over the parameter space k, ⌧ 2 {1, . . . 6}. Due to time constraints,

the analysis was limited to the closed eye modality.

To assess metastability of the resulting networks, we used a variation of transient network dis-

similarity (TNS), a measure recently introduced by Tagliazucchi et al. (2016). TNS is computed by

constructing a matrix in which entry (i, j) contains the correlation between the networks correspond-

ing to times ti and tj , and then averaging over all the entries in the matrix. In the present study,

we adopted a slight variation: instead of computing the correlation between networks, we use the

Hamming distance, which counts the number of rewirings necessary to go from one configuration to

another. We found this to be better suited to capture the distance between small networks. The re-

sulting measure, which we call transient network dissimilarity (TDN), will then be higher if networks

are on average more distant from each other.

Results are presented in Fig. 3.6, where asterisks indicate statistical significance with p < 0.01

and stars indicate p < 0.05. In line with our expectations, we observe higher TND under LSD than

under placebo (left panel). This indicates that spontaneous brain activity is exploring connectivity

motifs which are configurationally further away from each other, on average.

Figure 3.6: Left: Transient network dissimilarity (TND) index increases in the LSD state, indicating that a wider
repertoire of connectivity motifs are being explored on average by spontaneous brain activity. Right: Hamming
distances between subsequent networks tend to be higher under LSD, meaning that configurations the brain is
more likely to explore connectivity patterns which are configurationally far from each other. Asterisks indicate
significance with p < 0.01, stars indicate p < 0.05.

We also considered the Hamming distance between subsequent networks over time. This quantity

is obviously closely related to the TND index, but only considers distances across one time step.(Marchesi & Mediano 2016)

Under LSD, brain connectivity changes faster than usual.
Metastability.
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CONCLUSION

X Information theory uses probability to study optimal
communication.

X There is an alternative statistical interpretation of IT.

X We can combine ML and IT to study complex systems.

X Under LSD, the brain is more interconnected, more
metastable, and more entropic.

Thank you for listening!
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