INFORMATION THEORY, INFERENCE, AND BRAIN NETWORKS

MOTIVATION	The basics	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

MOTIVATION

BEFORE WE START...

- Whadda hell are ya doing here?
- Because I like things like these...

My goal is the scientific study of the emergence of distributed intelligence.

PARALLEL DISTRIBUTED PROCESSING

Explorations in the Microstructure of Cognition Waturne 2. Psychological and Biological Models

JAMES L MCCLELLAND, DAVID E RUMELHART, AND THE POP RESEARCH GROUP

Ser Non

THE MISSING PIECE IN PDP

 PDP says that computation <u>can</u> happen, but it doesn't explain <u>how</u>.

 Challenge: how can we describe the interaction between many neurons when performing a computation?
 Information theory.

Motivation	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

THE BASICS

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

Kery important result/definition.

Problem of interest.

Exercise. (Some optional, all recommended!)

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

In earlier times, information was identified with the objects that carried it.

Later, information was carried by waves (sound, light, electromagnetic).

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

Also true for neural networks!

Rosenblatt holding the weights of a perceptron.

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

Information needs a **communication protocol**: a priori agreement between sender and receiver.

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

All developed in the seminal 1948 paper,

A Mathematical Theory of Communication

By Claude Shannon.

MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS 0 00 00 00 00 00 00

GOAL OF INFORMATION THEORY

How can we achieve optimal communication through a noisy channel?

MOTIVATIONThe basicsCONTINUOUS VARIABLESSTATISTICSNEURODYNAMICS000000000000

PLAN FOR THESE LECTURES

1. Entropy and coding.

- 2. KL divergence and mutual information.
- 3. Links with statistics and maximum likelihood.
- 4. Research example.

ENCODING EXAMPLE

Let's find the shortest encoding for this message:

► Naive code:

0010000111000001

Huffman code:

ENCODING EXAMPLE

Average code length:

$$\sum_{x} p(x) L(x)$$

- Key idea: frequent symbols have shorter sequences.
- In particular, proportional to $-\log_2 p(x)$.

Motivation o	THE BASICS	Continuous variables oo	STATISTICS 00	NEURODYNAMICS

ENTROPY

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

What's the entropy of a random fair coin?

Discuss with your neighbour.

ENTROPY

Bernoulli distribution: $H(p) = -p \log_2 p - (1 - p) \log_2 (1 - p)$

K Entropy is a measure of *uncertainty* or *randomness*.

Motivation	The basics	Continuous variables	STATISTICS	NEURODYNAMICS
o	0000	00	00	

ENTROPY

Rank these distributions from highest to lowest entropy.

JOINT ENTROPY

In addition, we can define these two quantities:

► Joint entropy:

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

Conditional entropy:

$$H(X|Y) = -\sum_{x,y} p(x,y) \log p(x|y)$$

MOTIVATIONTHE BASICSCONTINUOUS VARIABLESSTATISTICSNEURODYNAMICS00000000000

KULLBACK-LEIBLER DIVERGENCE

What happens if we use the wrong code?

Previous code:	Symbol	Assumed	Real
1 01 001 000	X	q(x)	<i>p</i> (<i>x</i>)
0000010010100000100101		1/2	0
		1/4	1/4
► New optimal code:		1/8	1/2
<mark>01</mark> 1 00		1/8	1/4
001101001101			

MOTIVATIONThe BASICSCONTINUOUS VARIABLESSTATISTICSNEURODYNAMICS00000000000

KULLBACK-LEIBLER DIVERGENCE

Extra cost incurred if we use the wrong code.

$$D_{\text{KL}}(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

= $\sum_{x} p(x) \log_2 q(x)$ - $\sum_{x} p(x) \log_2 p(x)$
Actual message length - $\sum_{x} p(x) \log_2 p(x)$

Prove that
$$D_{\text{KL}}(p||q) = 0$$
 iff $p = q$.

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

KULLBACK-LEIBLER DIVERGENCE PROPERTIES

► KL divergence is non-negative:

 $D_{ ext{KL}}(
ho\|q)\geq 0$

• The equality holds when p = q:

$$D_{\mathrm{KL}}(p\|q)=0$$
 iff $p=q$

It is not symmetric:

$$D_{ ext{KL}}(oldsymbol{p} \|oldsymbol{q})
eq D_{ ext{KL}}(oldsymbol{q} \|oldsymbol{p})$$

KULLBACK-LEIBLER DIVERGENCE

Calculate these KL divergences:

 $D_{\text{KL}}(P_3 \| P_1)$ $D_{\text{KL}}(P_2 \| P_4)$ $D_{\text{KL}}(P_4 \| P_2)$ $D_{\text{KL}}(P_3 \| P_4)$

Motivation	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

SENDING INFORMATION

THE NOISY TYPEWRITER

- ► Input *X* is uniform distribution on *N* symbols.
- Need $\log_2 N$ bits to encode.
- Symbols will be mixed by channel noise!
- Can only send one of N/2 symbols without loss.
- Rate of transmission to Y is

$$H(Y) - H(Y|X) = \log_2 N - 1$$
$$= \log_2 \frac{N}{2}$$

MUTUAL INFORMATION

How much does knowing X tell you about Y.

$$I(X; Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = \underbrace{H(Y)}_{\substack{\text{Uncertainty}\\ \text{about } Y}} - \underbrace{H(Y|X)}_{\substack{\text{Uncertainty}\\ \text{about } Y}}_{\substack{\text{dbout } Y\\ \text{given } X}}$$

What's the MI of the binary symmetric channel?

Discuss with your neighbour.

MUTUAL INFORMATION

► MI is maximal when X and Y are identical and minimal when they are independent.

※ MI is a generalised measure of correlation.

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

MUTUAL INFORMATION PROPERTIES

► MI is symmetric:

$$I(X;Y)=I(Y;X)$$

MI is non-negative:

$$I(X; Y) \ge 0$$
 , $I(X; Y) = 0$ iff $X \perp Y$

MI is a KL divergence:

$$I(X; Y) = D_{\mathrm{KL}}(p(x, y) \| p(x) p(y))$$

Motivation	The basics	Continuous variables	STATISTICS	NEURODYNAMICS
0	000●	00	00	

Recap

- ✓ Entropy measures *uncertainty* or *randomness*.
- ✓ KL divergence measures *differences* between distributions.
- ✓ MI measures *correlation* between variables.

0	000	00	00	000
0	000	00	00	000
MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS

MORE EXAMPLES

Calculate the following:

- 1. H(X)
- 2. H(X, Y)
- 3. I(X; Y)
- 4. $D_{\mathrm{KL}}(p(x) \| p(y))$

p(x, y)	<i>x</i> = 0	<i>x</i> = 1
<i>y</i> = 0	0.1	0
<i>y</i> = 1	0.1	0.3
<i>y</i> = 2	0.3	0.2

MOTIVATION	The basics	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

CONTINUOUS VARIABLES

MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS 0 000 00 00 00 00 000

CONTINUOUS VARIABLES

So far, we've used discrete variables only...

But in ML we use \mathbb{R}^{D} !

Can we extend these definitions to continuous variables?

Motivation o	The basics 0000	CONTINUOUS VARIABLES	STATISTICS 00	NEURODYNAMICS

ENTROPY IN \mathbb{R}^1

- We have a variable $X \in \mathbb{R}$ with pdf f(x).
- We use bins of width Δ to get a discrete variable X^{Δ} with

$$p_i = \int_{i\Delta}^{(i+1)\Delta} f(x) dx = f(x_i)\Delta$$

Now we take $H(X^{\Delta})$ as $\Delta \rightarrow 0$:

$$H(X^{\Delta}) = -\sum_{i} p_{i} \log p_{i}$$

= $-\sum_{i} f(x_{i}) \Delta \log(f(x_{i})\Delta)$
= $-\sum_{i} \Delta f(x_{i}) \log f(x_{i}) - \underbrace{\log \Delta}_{\text{Riemann integral Divergent term}}$

DIFFERENTIAL ENTROPY

Ignoring the log Δ , we get the formula for differential entropy:

$$H(X) = -\int f(x)\log f(x)dx$$

Differential entropy is not a "real" entropy!

MUTUAL INFORMATION IN \mathbb{R}^1

Magically, for MI the divergent terms cancel out, and...

Continuous MI is actually a real MI!

🔆 Summary:

- MI in continuous variables is interpretable. \checkmark
- X Entropy in continuous variables is not.

MI INVARIANCE

MI is invariant to invertible mappings.

$$I(U; V) = I(X; Y)$$
 where $U = f(X), V = g(Y)$

if f and g are smooth and invertible.

Prove this result.

Tip: Use the fact that densities transform as p(u, v) = |J|p(x, y), with J the appropriate Jacobian, and the Jacobian is block-diagonal.

ENTROPY IN GAUSSIAN DISTRIBUTIONS

Let's calculate the entropy of a Gaussian $p(x) = \mathcal{N}(x|\mu, \Sigma)$:

$$H(X) = -\int_{-\infty}^{+\infty} \mathcal{N}(x|\mu, \mathbf{\Sigma}) \log \mathcal{N}(x|\mu, \mathbf{\Sigma}) dx$$
$$= \frac{1}{2} \mathbb{E}[\log |2\pi\mathbf{\Sigma}|] + \frac{1}{2} \mathbb{E}[(x-\mu)^{\top} \mathbf{\Sigma}^{-1} (x-\mu)]$$
$$= \frac{1}{2} \log |2\pi\mathbf{\Sigma}| + \frac{1}{2} \mathbb{E}[(x-\mu)^{\top} \mathbf{\Sigma}^{-1} (x-\mu)]$$

MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS 0 000 0 00 00 00 00 000

ENTROPY IN GAUSSIAN DISTRIBUTIONS

For the second term:

$$\mathbb{E}\left[\operatorname{tr}\left((\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)\right] = \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\mathbb{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]\right)$$
$$= \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\right)$$
$$= \boldsymbol{D}$$

Overall:

$$H(X) = \frac{1}{2} \log |2\pi e \Sigma|$$

Information measures have analytical solutions for Gaussian distributions.

INFORMATION IN GAUSSIAN DISTRIBUTIONS

Given that the entropy of a Gaussian $\mathcal{N}(x|\mu, \Sigma)$ is:

$$H(X) = \frac{1}{2} \log |2\pi e \mathbf{\Sigma}|$$

What's the mutual information between two Gaussians?

Discuss with your neighbour.

 MOTIVATION
 THE BASICS
 CONTINUOUS VARIABLES
 STATISTICS
 NEURODYNAMICS

 0
 0000
 0●
 00
 000

MI IN GAUSSIAN DISTRIBUTIONS

$$I(X; Y) = -\frac{1}{2}\log(1-\rho^2)$$

 MOTIVATION
 The basics
 Continuous variables
 Statistics
 Neurodynamics

 0
 0000
 0●
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

KL IN GAUSSIAN DISTRIBUTIONS

$$D_{\mathrm{KL}}(p_1(x) \| p_2(x)) = \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{\sigma_2^2} - \frac{1}{2}$$

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	0.	00	000

LOTS OF OTHER STUFF!

Data processing inequalities.

Rate-distortion theories.

Error-correcting codes.

Motivation	The basics	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

STATISTICS

MOTIVATION	The basics	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

All that encoding was ok, but...

What's the point?

Statistical interpretation of information theory

- Assume we have data $\mathbf{x}_i \in \mathbb{R}^D$ generated from $p^*(\mathbf{x})$.
- Take family of models $p \in \mathcal{P} = \{p(\cdot | \theta) : \theta \in \mathbb{R}^M\}$.
- Assume there exists a θ^* such that $p(\mathbf{x}|\theta^*) = p^*(\mathbf{x})$.
- Consider maximum-likelihood estimator $\theta_{\rm ML} = \arg\max \mathbb{E}[\rho(\boldsymbol{x}|\boldsymbol{\theta})].$ Then:

 $\mathbb{E}[\log p(\boldsymbol{x}|\boldsymbol{\theta}_{\mathrm{ML}})] = \mathbb{E}[\log p(\boldsymbol{x}|\boldsymbol{\theta}^*)] = -H[p^*(\boldsymbol{x})]$

Entropy is the negative log-likelihood of the best model!

Sketch of a proof:

- 1. If $p^* \in \mathcal{P}$, the maximum is achieved iff $p(\cdot|\theta) = p^*(\cdot)$ and therefore $\mathbb{E}[\log p(\mathbf{x}|\theta_{\mathrm{ML}})] = -H[p^*(\mathbf{x})]$.
- 2. If $p^* \notin P$, the margin between the MLE and the true model is $D_{\text{KL}}(p^*(\boldsymbol{x}) || p(\boldsymbol{x} | \boldsymbol{\theta}_{\text{ML}})) > 0$.

Another derivation:

$$D_{\mathrm{KL}}(p^*(\boldsymbol{x}) \| p(\boldsymbol{x}|\theta)) = -\underbrace{H[p^*(\boldsymbol{x})]}_{\mathrm{Doesn't depend on } \theta} - \underbrace{\mathbb{E}[\log p(\boldsymbol{x}|\theta)]}_{\mathrm{Likelihood}}$$

$$\operatorname*{argmin}_{\theta} D_{\mathrm{KL}}(p^*(\boldsymbol{x}) \| p(\boldsymbol{x}|\theta)) = \operatorname*{argmax}_{\theta} \mathbb{E}[\log p(\boldsymbol{x}|\theta)]$$

► To show that E[log p(x|θ)] is the normal likelihood, consider dataset x₁,..., x_N ~ p*(x):

$$\mathbb{E}[\log p(\boldsymbol{x}|\boldsymbol{\theta})] = \int p^*(\boldsymbol{x}) \log p(\boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x} = \frac{1}{N} \sum_{i=1}^N \log p(\boldsymbol{x}_i|\boldsymbol{\theta})$$

Sampling

* Maximising likelihood is equivalent to minimising KL!

$$egin{aligned} m{ heta}_{\mathrm{ML}} &= rgmax_{ heta} \mathbb{E}[m{p}(m{x}|m{ heta})] \ m{ heta}_{\mathrm{ML}} &= rgmin_{ heta} D_{\mathrm{KL}}(m{p}^*(m{x}) \| m{p}(m{x}|m{ heta})) \end{aligned}$$

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	0•	000

MUTUAL INFORMATION AND CORRELATION

In non-Gaussian distributions, MI acts as a generalised correlation.

Motivation	The basics	Continuous variables	STATISTICS	Neurodynamics
o	0000		O	000
Recap				

- Entropy functionals (MI, KL) arise from optimal communication principles.
- ✓ Alternative interpretation in terms of likelihood.
- ✓ All that's left is specifying a model $p(x|\theta)$.
 - \rightarrow Sampling and density estimation.

Motivation	The basics	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

NEURODYNAMICS

MOTIVATIONTHE BASICSCONTINUOUS VARIABLESSTATISTICSNEURODYNAMICS00000000000

PSYCHEDELICS AND HALLUCINOGENICS

MOTIVATION THE BASICS C	Continuous variables	STATISTICS	NEURODYNAMICS
0 0000 0	00	00	000

PSYCHEDELIC PHENOMENOLOGY

- Onset of audiovisual hallucinations.
 "With eyes closed, I saw geometric patterns."
- Distortion of self models.
 "I experienced a disintegration of my 'self' or 'ego'."
- Increased cognitive flexibility.
 "My thoughts wandered freely."

How does LSD alter information processing in the brain?

Motivation o	The basics 0000	Continuous variables	STATISTICS 00	NEURODYNAMICS

THE DATA

► High-frequency magnetoencephalographic (MEG) data.

BRAIN ENTROPY

- Entropy estimator for sequential data known as *Lempel-Ziv*.
- Calculate average entropy of cortical surface.
- *
- Under LSD, brain has much higher entropy than usual.

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

THE ENTROPIC BRAIN

frontiers in HUMAN NEUROSCIENCE

HYPOTHESIS AND THEORY ARTICLE published: 03 February 2014 doi: 10.3389/fnhum.2014.00020

The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs

Robin L. Carhart-Harris¹*, Robert Leech², Peter J. Hellyer², Murray Shanahan³, Amanda Feilding⁴, Enzo Tagliazucchi⁵, Dante R. Chialvo⁶ and David Nutt¹

¹ Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK

² C3NL, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK

³ Department of Computing, Imperial College London, London, UK

⁴ The Beckley Foundation, Beckley Park, Oxford, UK

⁵ Neurology Department and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany

6 Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina

MOTIVATION	THE BASICS	CONTINUOUS VARIABLES	STATISTICS	NEURODYNAMICS
0	0000	00	00	000

CONNECTIVITY INFERENCE

Evidence for connected model M₁ over M₂ is:

$$I(X_t; Y_{t+1}|Y_t) = \int p(x_t, y_t, y_{t+1}) \log \frac{p(y_{t+1}|y_t, x_t)}{p(y_{t+1}|y_t)}$$

MOTIVATIONTHE BASICSCONTINUOUS VARIABLESSTATISTICSNEURODYNAMICS0000000000000

CONNECTIVITY INFERENCE

Two problems with this:

- 1. Compute integral $\int p(w_t)f(w_t)dw_t$, where $w_t = \{x_t, y_t, y_{t+1}\}$.
- 2. Evaluate likelihoods $p(y_{t+1}|y_t, x_t), p(y_{t+1}|y_t)$.

Solution 1: sampling!

$$\begin{split} I(X_t; Y_{t+1}|Y_t) &= \int p(w_t) \log \frac{p(y_{t+1}|y_t, x_t)}{p(y_{t+1}|y_t)} dw_t \\ &\approx \frac{1}{T} \sum_{i=1}^T \log \frac{p(y_{t+1}^i|y_t^i, x_t^i)}{p(y_{t+1}^i|y_t^i)} \end{split}$$

Solution 2: probabilistic regression!

- 1. Predict y_{t+1} from y_t .
- 2. Predict y_{t+1} from both y_t and x_t .

Check if (2) is better than (1)

BRAIN NETWORKS

Algorithm: Iterative network inference.Data: Set of brain regions \mathcal{R} for $Y \in \mathcal{R}$ doInitialise $pa(Y) = \emptyset$ while $max_X I(X_t; Y_{t+1}|Y_t, pa(Y)_t) > 0$ do $| pa(Y) \leftarrow pa(Y) \cup argmax_X I(X_t; Y_{t+1}|Y_t, pa(Y)_t)$ end

end

GLOBAL CONNECTIVITY

- Count total number of significant connections.
- 🔆 Under LSD, the brain is more interconnected than usual.

(Marchesi & Mediano 2016)

TRANSIENT NETWORK DISSIMILARITY

- Build transient networks N_{t_0}, N_{t_1}, \ldots
- How quickly do they change?
- Transient Network Dissimilarity (TND), average number of "rewirings:"

$$\mathbb{E}[|N_{t_i} - N_{t_{i+1}}|]$$

Under LSD, brain connectivity changes faster than usual. Metastability.

(Marchesi & Mediano 2016)

CONCLUSION

- Information theory uses probability to study optimal communication.
- ✓ There is an alternative statistical interpretation of IT.
- ✓ We can combine ML and IT to study complex systems.
- ✓ Under LSD, the brain is more interconnected, more metastable, and more entropic.

Thank you for listening!