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Model Selection
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From PRML (Bishop, 2006)

Sometimes, we have to make high-level decisions about the model we
want to use:

§ Number of components in a mixture model

§ Network architecture of (deep) neural networks

§ Type of kernel in a support vector machine

§ Degree of a polynomial in a regression problem
Model Selection Marc Deisenroth @AIMS, Rwanda, October 10, 2018 2



x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

From PRML (Bishop, 2006)

§ For each high-level choice, we get a different set of parameters

§ Rule of thumb: More parameters = more flexible model

Problem

§ At training time, we can only use the training data to evaluate the
performance of the model

§ We are generally interested in the test performance, not so much
in the training performance
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Training vs Test Error
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From PRML (Bishop, 2006)

General problem:
§ Model fits training data perfectly, but may not do well on test

data Overfitting (especially with MLE)

§ Training performance ‰ test performance, but we are mostly
interested in test performance

§ Need mechanisms for assessing how a model generalizes to
unseen test data Model selection
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Training vs Test Error (2)

From Y. Dauphin’s lecture at DL Indaba 2017

§ What is suspicious here?
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Cross Validation

Training

Validation

§ Heuristic to estimate the generalization performance of a model

§ Partition your training data into K subsets

§ Train the model on K´ 1 subsets

§ Evaluate the model on the other subset
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Cross-Validation (2)

§ Cross-validation effectively computes an empirical
generalization error R on validation set V :

EV rRp f ,Vqs « 1
K

K
ÿ

k“1

Rp f ,V pkqq

§ R is a loss function (e.g., RMSE or NLL)

§ To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results
are averaged over the rounds.

§ Train many models, compare test error

Number of training runs increases with the number of partitions
Trivial to parallelize
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Information Criteria

§ Add penalty term to MLE to compensate for the overfitting of
more complex models (with lots of parameters)

§ Maximize Akaike Information Criterion (Akaike 1974):

ln ppx|θMLq ´M

where M is the number of model parameters
§ AIC estimates the relative information lost by a given model
§ Bayesian Information Criterion/MDL (Schwarz 1978) (for

exponential family distributions):

ln ppxq “ ln
ż

ppx|θqppθqdθ « ln ppx|θMLq ´
1
2

M ln N

where N is the number of data points and M is the number of
parameters.

§ BIC penalizes model complexity more heavily than AIC.
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Bayesian Model Comparison

§ Place a prior ppMq on the class of models

§ Given a training set D, we compute the posterior distribution
over models as

ppMi|Dq 9 ppMiqppD|Miq

which allows us to express a preference for different models

§ Model evidence (marginal likelihood):

ppD|Miq “

ż

ppD|θMiqppθMi |MiqdθMi

§ Bayes factor for comparing two models: ppD|M1q{ppD|M2q

§ Integral often intractable

Mk

θk

D
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Bayesian Model Averaging

§ Place a prior ppMq on the class of models

§ Instead of selecting the “best” model, integrate out the
corresponding model parameters θM and average over all
models Mi, i “ 1, . . . , L

ppDq “
L

ÿ

i“1

ppMiq

ż

ppD|θMiqppθMi |MiqdθMi
loooooooooooooooomoooooooooooooooon

“ppD|Miq

§ Computationally expensive

§ Integral often intractable (still...)
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Occam’s Razor

From crowfly.net

§ Favor simpler models over complicated ones
§ Very expressive models may be a less probable choice for

modeling a given dataset
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Occam’s Razor (2)

p(D|M2)

p(D|M1)

C1

Evidence

D

From MacKay, ITILA (2003)

§ Bayes’ theorem rewards models in proportion to how much they
predicted the data that occurred Marginal likelihood
(assuming a uniform prior over models)

§ Simple model can predict only a small number of datasets

Marginal likelihood automatically embodies Occam’s razor
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Summary

Training

Validation

p(D|M2)

p(D|M1)

C1

Evidence

D

§ Objective: Achieve good generalization performance
§ Assess generalization performance if only training data is

available
§ Cross validation
§ Information criteria

§ Occam’s razor: choose the simplest model that explains the data

§ Bayesian model selection and importance of the marginal
likelihood
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