Model Selection

Marc Deisenroth

Quantum Leap Africa
African Institute for Mathematical
Sciences, Rwanda
Department of Computing Imperial College London
© @mpd37
mdeisenroth@aimsammi.org

October 10, 2018

Model Selection

Sometimes, we have to make high-level decisions about the model we want to use:

- Number of components in a mixture model
- Network architecture of (deep) neural networks
- Type of kernel in a support vector machine
- Degree of a polynomial in a regression problem

- For each high-level choice, we get a different set of parameters
- Rule of thumb: More parameters = more flexible model

- For each high-level choice, we get a different set of parameters
- Rule of thumb: More parameters = more flexible model

Problem

- At training time, we can only use the training data to evaluate the performance of the model
- We are generally interested in the test performance, not so much in the training performance

Training vs Test Error

General problem:

- Model fits training data perfectly, but may not do well on test data \downarrow Overfitting (especially with MLE)

Training vs Test Error

General problem:

- Model fits training data perfectly, but may not do well on test data \downarrow Overfitting (especially with MLE)
- Training performance \neq test performance, but we are mostly interested in test performance

Training vs Test Error

General problem:

- Model fits training data perfectly, but may not do well on test data \downarrow Overfitting (especially with MLE)
- Training performance \neq test performance, but we are mostly interested in test performance
- Need mechanisms for assessing how a model generalizes to unseen test data \boldsymbol{M} Model selection

Training vs Test Error (2)

Model	L2	Train Accuracy	Test Accuracy
1 layer MLP		100.0	50.51
3 layer MLP	\checkmark	99.80	50.39
Alexnet (CNN)	\checkmark	100.0	52.39
Inception (CNN++)	$\boxed{100.0}$	53.35	

Zhang, Chiyuan; Bengio, Samy; Hardt, Moritz; Recht, Benjamin; Vinyals, Oriol. "Understanding deep learning requires rethinking generalization", ICLR 2017

$$
\text { From Y. Dauphin's lecture at DL Indaba } 2017
$$

- What is suspicious here?

Cross Validation

- Heuristic to estimate the generalization performance of a model
- Partition your training data into K subsets
- Train the model on $K-1$ subsets
- Evaluate the model on the other subset

Cross-Validation (2)

- Cross-validation effectively computes an empirical generalization error R on validation set \mathcal{V} :

$$
\mathbb{E}_{\mathcal{V}}[R(f, \mathcal{V})] \approx \frac{1}{K} \sum_{k=1}^{K} R\left(f, \mathcal{V}^{(k)}\right)
$$

- R is a loss function (e.g., RMSE or NLL)
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.

Cross-Validation (2)

- Cross-validation effectively computes an empirical generalization error R on validation set \mathcal{V} :

$$
\mathbb{E}_{\mathcal{V}}[R(f, \mathcal{V})] \approx \frac{1}{K} \sum_{k=1}^{K} R\left(f, \mathcal{V}^{(k)}\right)
$$

- R is a loss function (e.g., RMSE or NLL)
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.
- Train many models, compare test error

Cross-Validation (2)

- Cross-validation effectively computes an empirical generalization error R on validation set \mathcal{V} :

$$
\mathbb{E}_{\mathcal{V}}[R(f, \mathcal{V})] \approx \frac{1}{K} \sum_{k=1}^{K} R\left(f, \mathcal{V}^{(k)}\right)
$$

- R is a loss function (e.g., RMSE or NLL)
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.
- Train many models, compare test error

Number of training runs increases with the number of partitions Trivial to parallelize

Information Criteria

- Add penalty term to MLE to compensate for the overfitting of more complex models (with lots of parameters)

Information Criteria

- Add penalty term to MLE to compensate for the overfitting of more complex models (with lots of parameters)
- Maximize Akaike Information Criterion (Akaike 1974):

$$
\ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-M
$$

where M is the number of model parameters

Information Criteria

- Add penalty term to MLE to compensate for the overfitting of more complex models (with lots of parameters)
- Maximize Akaike Information Criterion (Akaike 1974):

$$
\ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-M
$$

where M is the number of model parameters

- AIC estimates the relative information lost by a given model

Information Criteria

- Add penalty term to MLE to compensate for the overfitting of more complex models (with lots of parameters)
- Maximize Akaike Information Criterion (Akaike 1974):

$$
\ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-M
$$

where M is the number of model parameters

- AIC estimates the relative information lost by a given model
- Bayesian Information Criterion/MDL (Schwarz 1978) (for exponential family distributions):

$$
\ln p(\boldsymbol{x})=\ln \int p(\boldsymbol{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \approx \ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-\frac{1}{2} M \ln N
$$

where N is the number of data points and M is the number of parameters.

Information Criteria

- Add penalty term to MLE to compensate for the overfitting of more complex models (with lots of parameters)
- Maximize Akaike Information Criterion (Akaike 1974):

$$
\ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-M
$$

where M is the number of model parameters

- AIC estimates the relative information lost by a given model
- Bayesian Information Criterion/MDL (Schwarz 1978) (for exponential family distributions):

$$
\ln p(\boldsymbol{x})=\ln \int p(\boldsymbol{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \approx \ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-\frac{1}{2} M \ln N
$$

where N is the number of data points and M is the number of parameters.

- BIC penalizes model complexity more heavily than AIC.

Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models

Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

- Model evidence (marginal likelihood):

$$
p\left(\mathcal{D} \mid M_{i}\right)=\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}
$$

Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

- Model evidence (marginal likelihood):

$$
p\left(\mathcal{D} \mid M_{i}\right)=\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}
$$

- Bayes factor for comparing two models: $p\left(\mathcal{D} \mid M_{1}\right) / p\left(\mathcal{D} \mid M_{2}\right)$

Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

- Model evidence (marginal likelihood):

$$
p\left(\mathcal{D} \mid M_{i}\right)=\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}
$$

- Bayes factor for comparing two models: $p\left(\mathcal{D} \mid M_{1}\right) / p\left(\mathcal{D} \mid M_{2}\right)$
- Integral often intractable

Bayesian Model Averaging

- Place a prior $p(M)$ on the class of models
- Instead of selecting the "best" model, integrate out the corresponding model parameters $\boldsymbol{\theta}_{M}$ and average over all models $M_{i}, i=1, \ldots, L$

$$
p(\mathcal{D})=\sum_{i=1}^{L} p\left(M_{i}\right) \underbrace{\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}}_{=p\left(\mathcal{D} \mid M_{i}\right)}
$$

Bayesian Model Averaging

- Place a prior $p(M)$ on the class of models
- Instead of selecting the "best" model, integrate out the corresponding model parameters $\boldsymbol{\theta}_{M}$ and average over all models $M_{i}, i=1, \ldots, L$

$$
p(\mathcal{D})=\sum_{i=1}^{L} p\left(M_{i}\right) \underbrace{\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}}_{=p\left(\mathcal{D} \mid M_{i}\right)}
$$

- Computationally expensive
- Integral often intractable (still...)

Occam's Razor

From crowfly.net

- Favor simpler models over complicated ones
- Very expressive models may be a less probable choice for modeling a given dataset

Occam's Razor (2)

From MacKay, ITILA (2003)

- Bayes' theorem rewards models in proportion to how much they predicted the data that occurred \mapsto Marginal likelihood (assuming a uniform prior over models)
- Simple model can predict only a small number of datasets

Occam's Razor (2)

From MacKay, ITILA (2003)

- Bayes' theorem rewards models in proportion to how much they predicted the data that occurred \mapsto Marginal likelihood (assuming a uniform prior over models)
- Simple model can predict only a small number of datasets
- Marginal likelihood automatically embodies Occam's razor

Summary

- Objective: Achieve good generalization performance
- Assess generalization performance if only training data is available
- Cross validation
- Information criteria
- Occam's razor: choose the simplest model that explains the data
- Bayesian model selection and importance of the marginal likelihood

References I

[1] H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2006.
[3] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 2003.
[4] C. E. Rasmussen and Z. Ghahramani. Occam's Razor. In Advances in Neural Information Processing Systems, pages 294-300. The MIT Press, 2001.
[5] G. E. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6(2):461-464, 1978.

