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High-Dimensional Data

§ Real-world data is often high dimensional
§ Challenges:

§ Difficult to analyze
§ Difficult to visualize
§ Difficult to interpret
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Properties of High-dimensional Data
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§ Many dimensions are unnecessary

§ Data often lives on a low-dimensional manifold

Dimensionality reduction finds the relevant dimensions.
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Background: Coordinate Representations

Consider R2 with the canonical basis e1 “ r1, 0sJ, e2 “ r0, 1sJ.

x “
„

5
3



“ 5e1 ` 3e2 Linear combination of basis vectors

§ Coordinates of x w.r.t. pe1, e2q: r5, 3s

Consider the vectors of the form

x̃ “
„

0
z



P R2 , z P R

Write them as 0e1 ` ze2.
§ Only remember/store the coordinate/code z of the e2 vector

Compression
§ Set of x̃ vectors forms a vector subspace U Ď R2 with dimpUq “ 1

because U “ spanre2s.
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PCA Setting

x x̃z

original compressed

codeRD RD

RM

Encoder Decoder

§ Dataset X :“ tx1, . . . , xNu, xn P R
D

§ Data matrix X :“ rx1, . . . , xNs P R
DˆN Often N ˆD matrix

§ Without loss of generality: ErX s “ 0 Centered data
Data covariance matrix S “ 1

N XXJ P RDˆD

§ Linear relationships between latent code z and data x:

z “ BJx , x̃ “ Bz

§ B “ rb1, . . . , bMs P R
DˆM is an orthogonal matrix

§ Columns of B are an ONB of an M-dimensional subspace of RD
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Low-Dimensional Embedding

x x̃z

original compressed

codeRD RD

RM

Encoder Decoder
−1 0 1 2

x1
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U

§ Find an M-dimensional subspace U Ă RD onto which we project
the data

§ x̃ “ πUpxq is the projection of x onto U

§ Find projections x̃ that are as similar to x as possible
Find basis vectors b1, . . . , bM

§ Compression loss incurs if M ! D
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PCA Idea: Maximum Variance

§ Project D-dimensional data x onto an M-dimensional subspace
that retains as much information as possible

Data compression

§ Informally: information = diversity = variance
Maximize variance in projected space (Hotelling 1933)
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PCA Objective: Maximum Variance

§ Linear relationships:

z “ BJx , x̃ “ Bz

§ B “ rb1, . . . , bMs P R
DˆM is an orthogonal matrix

§ Columns of B are an ONB of an M-dimensional subspace of RD

§ Find B “ rb1, . . . , bMs so that the variance in the projected space
is maximized

max
b1,...,bM

Vrzs “ max
b1,...,bM

VrBJxs

s.t. }b1} “ 1 “ . . . “ }bM}

Constrained optimization problem
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Direction with Maximal Variance (1)

§ Maximize variance of first coordinate of z P RM:

V1 :“ Vrz1s “
1
N

N
ÿ

n“1

z2
n1

Empirical variance of the training dataset

§ First coordinate of zn is

zn1 “ bJ1 xn

Coordinate of orthogonal projection of xn onto spanrb1s

(1-dimensional subspace spanned by b1)

Vrz1s “

1
N

ÿN

n“1
pbJ1 xn q

2 “
1
N

ÿN

n“1
bJ1 xnxJn b1

“ bJ1

ˆ

1
N

ÿN

n“1
xnxJn

˙

b1 “ bJ1 Sb1
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Direction with Maximal Variance (2)

§ Maximize variance

max
b1,}b1}

2
“1
Vrz1s “ max

b1,}b1}
2
“1

bJ1 Sb1

§ Lagrangian:

Lpb1, λq “ bJ1 Sb1 ` λ1p1´ bJ1 b1q

Discuss with your neighbors and find λ1 and b1

§ Setting the gradients w.r.t. b1 and λ1 to 0 yields

Sb1 “ λ1b1

bJ1 b1 “ 1

§ b1 is an eigenvector of the data covariance matrix S
§ λ1 is the corresponding eigenvalue
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Direction with Maximal Variance (3)

§ Sb1 “ λ1b1

Vrz1s “ bJ1 Sb1 “ λ1bJ1 b1 “ λ1

Variance retained by first coordinate corresponds to
eigenvalue λ1

Choose eigenvector b1 associated with the largest eigenvalue

§ Projection:

x̃n “ b1bJ1 xn

§ Coordinate:

zn1 “ bJ1 xn

Direction with Maximal Variance
Maximizing the variance means to choose the direction b1 as the
eigenvector of the data covariance matrix S that is associated with the
largest eigenvalue λ1 of S.
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M-dimensional Subspace with Maximum Variance

General Result
The M-dimensional subspace of RD that retains the most variance is
spanned by the M eigenvectors of the data covariance matrix S that
are associated with the M largest eigenvalues of S. (e.g., Bishop 2006)
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Example: MNIST Embedding (Training Set)

§ Embedding of handwritten ‘0’ and ‘1’ digits (28ˆ 28 pixels) into
a two-dimensional subspace, spanned by the first two principal
components.
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Example: MNIST Reconstruction (Test Set)

Original

PCs: 1

PCs: 10

PCs: 100

PCs: 500

§ Reconstructions of original digits as the number of principal
components increases
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Refresher: Orthogonal Projection onto Subspaces

§ Basis b1, . . . , bM of a subspace U Ă RD

§ Define B “ rb1, ..., bMs P R
DˆM

§ Project x P RD onto subspace U:

πUpxq “ x̃ “ BpBJBq´1BJx

§ If b1, . . . , bM form an orthonormal basis (bJi bj “ δij), then the
projection simplifies to

x̃ “ BBJx
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PCA Objective: Minimize Reconstruction Error

§ Objective: Find orthogonal projection that minimizes the average
squared projection/reconstruction error

J “
1
N

N
ÿ

n“1

}xn ´ x̃n}
2

where x̃n “ πUpxnq is the projection of xn onto U
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Derivation (1)

§ Assume an orthonormal basis of RD “ spanrb1, . . . , bDs, such
that bJi bj “ δij

§ Every data point x can be written as a linear combination of the
basis vectors:

x “
D
ÿ

d“1

ηdbd “ Bη , B “ rb1, . . . , bDs

Rotation of the standard coordinates to a new coordinate
system defined by the basis pb1, . . . , bDq.

Original coordinates xd are replaced by ηd, d “ 1, . . . , D
§ Obtain ηd “ xJbd, such that

x “
D
ÿ

d“1

pxJbdqbd
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Derivation (2)

Objective
Approximate

x “
D
ÿ

d“1

ηdbd with x̃ “
M
ÿ

m“1

zmbm

using M ! D many basis vectors
Projection onto a lower-dimensional subspace
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Derivation (3): Objective

x̃n “

M
ÿ

m“1

zmnbm

loooomoooon

lower-dim. subspace

§ Choose coordinates zmn and basis vectors b1, . . . , bD such that the
average squared reconstruction error

JM “
1
N

N
ÿ

n“1

}xn ´ x̃n}
2

is minimized
Compute gradients of JM w.r.t. all variables, set to 0, solve
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Derivation (4): Optimal Coordinates

Necessary condition for optimum:
B JM

Bzmn
“ 0 ùñ zmn “ xJn bm , m “ 1, . . . , M

§ The optimal projection is the orthogonal projection
§ The optimal coordinate zmn is the orthogonal projection of xn

onto the one-dimensional subspace spanned by bm

§ pb1, . . . , bDq is ONB spanrbM`1, . . . , bDs is orthogonal
complement of principal subspace (spanrb1, . . . , bMs)

§ If

xn “
ÿD

d“1
ηdnbd and x̃n “

ÿM

m“1
zmnbm

then ηmn “ zmn for m “ 1, . . . , M
Minimum error is given by the orthogonal projection of xn onto the

principal subspace spanned by b1, . . . , bM
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Derivation (5): Displacement Vector

−5 0 5
x1

−6

−4

−2

0

2

4

6

x
2

U

U⊥

Approximation error only plays a role in
dimensions M` 1, . . . , D:

xn ´ x̃n “

D
ÿ

j“M`1

`

xJn bj
˘

bj

Displacement vector xn ´ x̃n lies in orthogonal complement UK of
principal subspace U (linear combination of the bj for
j “ M` 1, . . . , D)
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Derivation (5)

From the previous slide:

xn ´ x̃n “

D
ÿ

j“M`1

pxJn bjqbj

Let’s compute our reconstruction error:

JM “
1
N

N
ÿ

n“1

}xn ´ x̃n}
2 “

1
N

N
ÿ

n“1

pxn ´ x̃nq
Jpxn ´ x̃nq

“
1
N

N
ÿ

n“1

D
ÿ

j“M`1

pxJn bjq
2

“

D
ÿ

j“M`1

bJj Sbj

where S “ 1
N
řN

n“1 xnxJn is the data covariance matrix
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Derivation (5)
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Derivation (6)

§ What remains: Minimize JM w.r.t. bj under the constraint that the
bj form an orthonormal basis.

§ Similar setting to maximum variance perspective: Instead of
maximizing the variance in the principal subspace, we minimize
the variance in the orthogonal complement of the principal
subspace

§ End up with eigenvalue problem:

Sbj “ λjbj , j “ D` 1, . . . , M
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Derivation (7)

§ Find the eigenvectors bj of the data covariance matrix S

§ Corresponding value of the squared reconstruction error:

JM “

D
ÿ

j“M`1

λj

i.e., the sum of the eigenvalues associated with eigenvectors not
in the principle subspace

§ Minimizing JM requires us to choose the M eigenvectors as the
principle subspace that are associated with the M largest
eigenvalues.
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Geometric Interpretation

§ Objective: Project x onto an affine subspace µ` spanrb1s.
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Geometric Interpretation

§ Shift scenario to the origin (affine subspace vector subspace)
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Geometric Interpretation

§ Shift x as well (onto x´ µ).
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Geometric Interpretation

§ Orthogonal projection of x´ µ onto subspace spanned by b1
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Geometric Interpretation

§ Move projected point πU1pxq back into original (affine) setting.
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Key Steps of PCA

1. Compute the empirical mean µ of the data

2. Mean subtraction: Replace all data points xi with x̄i “ xi ´ µ.

3. Standardization: Divide the data by its standard deviation in
each dimension: X̂pdq “ X̄{σpXpdqq for d “ 1, . . . , D.

4. Eigendecomposition of the data covariance matrix: Compute the
eigenvectors (orthonormal) and eigenvalues of the data
covariance matrix S

5. Orthogonal projection: Choose the eigenvectors associated with
the M largest eigenvalues to be the basis of the principal
subspace. Obtain X̃

6. Moving back to original data space: X̃pdq “ X̃pdqσpXpdqq ` µd
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PCA Algorithm
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§ Dataset
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PCA Algorithm: Step 1
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§ Mean subtraction
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PCA Algorithm: Step 2
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§ Standardization (variance 1 in each direction)
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PCA Algorithm: Step 3
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§ Eigendecomposition of the data covariance matrix
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PCA Algorithm: Step 4

−2.5 0.0 2.5 5.0
x1

−4

−2

0

2

4

6

x
2

§ Orthogonal projection onto the principal subspace
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PCA Algorithm: Step 5
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§ Moving back to the original data space
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PCA for High-Dimensional Data

§ Fewer data points than dimensions, i.e., N ă D.

§ At least D´ N ` 1 eigenvalues 0.

§ Computation time for computing eigenvalues of data covariance
matrix S: OpD3q

§ Rephrase PCA

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 40



Reformulating PCA

§ Define X to be the Dˆ N-dimensional centered data matrix,
whose nth row is pxn ´ErxsqJ Mean normalization

§ Corresponding covariance: S “ 1
N XXJ

§ Corresponding eigenvector equation:

Sbi “ λibi ðñ
1
N

XXJbi “ λibi

§ Transformation (left-multiply by XJ):

1
N

XXJbi “ λibi ðñ
1
N

XJX XJbi
loomoon

“:vi

“ λi XJbi
loomoon

“:vi

vi is an eigenvector of the N ˆ N-matrix 1
N XJX, which has the

same non-zero eigenvalues as the original covariance matrix.
Get eigenvalues in OpN3q instead of OpD3q.
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Recovering the Original Eigenvectors

§ The new eigenvalue/eigenvector equation is

1
N

XJXvi “ λivi

where vi “ XJbi

§ We want to recover the original eigenvectors bi of the data
covariance matrix S “ 1

N XXJ

§ Left-multiply eigenvector equation by X yields

1
N

XXJ
looomooon

“S

Xvi “ λiXvi

and we recover Xvi as an eigenvector of S associated with
eigenvalue λi

§ Make sure to normalize Xvi so that }Xvi} “ 1
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Latent Variable Perspective

xn

B

zn

σ

µ

n “ 1, . . . , N

§ Model:
x “ Bz` µ` ε , ε „ N

`

0, σ2I
˘

§ Generative process:

z „ N
`

0, I
˘

x|z „ N
`

x |Bz` µ, σ2I
˘
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Why is this useful?

§ “Standard” PCA as a special case,

§ Comes with a likelihood function, and we can explicitly deal
with noisy observations

§ Allow for Bayesian model comparison via the marginal
likelihood

§ PCA as a generative model, which allows us to simulate new data

§ Straightforward connections to related algorithms and models
(e.g., ICA)

§ Deal with data dimensions that are missing at random by
applying Bayes’ theorem
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Likelihood

§ Model:
x “ Bz` µ` ε , ε „ N

`

0, σ2I
˘

§ PPCA Likelihood (integrate out the latent variables):

ppx|B, µ, σ2q “

ż

ppx|z, µ, σ2qppzqdz

“

ż

N
`

x |Bz` µ, σ2I
˘

N
`

z | 0, I
˘

dz

Is Gaussian with mean and covariance

Erxs “ EzrBz` µ` εs “ µ

Vrxs “ VzrBz` µ` εs “ BBJ ` σ2I
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Joint Distribution and Posterior

§ Joint distribution of observed and latent variables

ppx, z|B, µ, σ2q “ N
˜«

x
z

ff ˇ

ˇ

ˇ

ˇ

ˇ

«

µ

0

ff

,

«

BBJ ` σ2I B
BJ I

ff¸

§ Posterior via Gaussian conditioning:

ppz|x, B, µ, σ2q “ N
`

z |m, C
˘

m “ BJpBBJ ` σ2Iq´1px´ µq

C “ I ´ BJpBBJ ` σ2Iq´1B

For a new observation x˚ compute the posterior on ppz˚|x˚, Xq
and examine it (e.g., variance).

§ Generate new (plausible) data from this posterior
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Maximum Likelihood Estimation

§ In PPCA, we can determine the parameters µ, B, σ2 via maximum
likelihood estimation. PPCA Likelihood: ppX|µ, B, σ2q

§ Result (e.g., Tipping & Bishop (1999)):

µML “
1
N

N
ÿ

n“1

xn Sample mean

BML “ TpΛ´ σ2 Iq
1
2 R

σ2
ML “

1
D´M

D
ÿ

j“M`1

λj Average variance in orth. complement

§ For σ Ñ 0 the maximum likelihood solution gives the same result
as PCA (see mml-book.com)
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Related Models

§ Factor analysis:
Axis-aligned noise
(instead of isotropic)

§ Independent
component analysis:
Non-Gaussian prior
ppzq “

ś

m pmpzmq

§ Kernel PCA

§ Bayesian PCA: Priors
on parameters B, µ, σ2

Approximate
inference

xn

B

zn

σ

µ

n “ 1, . . . , N

§ Gaussian process latent variable
model (GP-LVM): Replace linear
mapping in Bayesian PCA with
Gaussian process. Point estimate of z

§ Bayesian GP-LVM maintains a
distribution on z Approximate
inference
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Summary

−2.5 0.0 2.5 5.0
x1

−4

−2

0

2

4

6

x
2

xn

B

zn

σ

µ

n “ 1, . . . , N

§ PCA: Algorithm for linear dimensionality reduction
§ Orthogonal projection of data onto a lower-dimensional subspace

§ Maximizes the variance of the projection
§ Minimizes the average squared projection/reconstruction error

§ High-dimensional data
§ Probabilistic PCA

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 51


	Introduction
	Setting
	Maximum Variance Perspective
	Projection Perspective
	PCA Algorithm
	PCA in High Dimensions
	Probabilistic PCA
	Related Models

