

Foundations of Machine Learning African Masters in Machine Intelligence

Imperial College London

Principal Component Analysis

Marc Deisenroth

Quantum Leap Africa African Institute for Mathematical Sciences, Rwanda

Department of Computing Imperial College London

October 4, 2018

♥ @mpd37 mdeisenroth@aimsammi.org

References

- Bishop: Pattern Recognition and Machine Learning, Chapter 12
- Deisenroth et al.: Mathematics for Machine Learning, Chapter 10 (https://mml-book.com)

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

High-Dimensional Data

- Real-world data is often high dimensional
- Challenges:
 - Difficult to analyze
 - Difficult to visualize
 - Difficult to interpret

Properties of High-dimensional Data

- Many dimensions are unnecessary
- Data often lives on a low-dimensional manifold
- ▶ Dimensionality reduction finds the relevant dimensions.

Principal Component Analysis

Marc Deisenroth

Background: Coordinate Representations

Consider \mathbb{R}^2 with the canonical basis $e_1 = [1, 0]^\top$, $e_2 = [0, 1]^\top$.

$$x = \begin{bmatrix} 5 \\ 3 \end{bmatrix} = 5e_1 + 3e_2$$
 Linear combination of basis vectors

► **Coordinates** of *x* w.r.t. (*e*₁, *e*₂): [5,3]

Background: Coordinate Representations

Consider \mathbb{R}^2 with the canonical basis $e_1 = [1, 0]^\top$, $e_2 = [0, 1]^\top$.

 $x = \begin{bmatrix} 5 \\ 3 \end{bmatrix} = 5e_1 + 3e_2$ Linear combination of basis vectors

► **Coordinates** of *x* w.r.t. (*e*₁, *e*₂): [5,3]

Consider the vectors of the form

$$ilde{x} = \begin{bmatrix} 0 \\ z \end{bmatrix} \in \mathbb{R}^2, \quad z \in \mathbb{R}$$

Write them as $0e_1 + ze_2$.

- Only remember/store the coordinate/code *z* of the *e*₂ vector
 Compression
- Set of x vectors forms a vector subspace U ⊆ ℝ² with dim(U) = 1 because U = span[e₂].

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

PCA Setting

- Dataset $\mathcal{X} := \{x_1, \ldots, x_N\}, x_n \in \mathbb{R}^D$
- ▶ Data matrix $X := [x_1, ..., x_N] \in \mathbb{R}^{D \times N}$ ▶ Often $N \times D$ matrix

PCA Setting

- Dataset $\mathcal{X} := \{x_1, \ldots, x_N\}, x_n \in \mathbb{R}^D$
- ▶ Data matrix $X := [x_1, ..., x_N] \in \mathbb{R}^{D \times N}$ ▶ Often $N \times D$ matrix
- Without loss of generality: E[X] = 0 ▶ Centered data
 ▶ Data covariance matrix

PCA Setting

• Dataset
$$\mathcal{X} := \{x_1, \ldots, x_N\}, x_n \in \mathbb{R}^D$$

- ▶ Data matrix $X := [x_1, ..., x_N] \in \mathbb{R}^{D \times N}$ ▶ Often $N \times D$ matrix
- Without loss of generality: E[X] = 0 ⇒ Centered data
 ⇒ Data covariance matrix S = ¹/_NXX^T ∈ ℝ^{D×D}
- Linear relationships between latent code *z* and data *x*:

$$z = B^{\top} x$$
, $\tilde{x} = B z$

•
$$\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_M] \in \mathbb{R}^{D \times M}$$
 is an orthogonal matrix

Principal Component Analysis

Low-Dimensional Embedding

- Find an *M*-dimensional subspace $U \subset \mathbb{R}^D$ onto which we project the data
- $\tilde{x} = \pi_U(x)$ is the projection of *x* onto *U*
- ▶ Find projections x̃ that are as similar to x as possible
 ▶ Find basis vectors b₁,..., b_M
- Compression loss incurs if *M* « *D*

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

PCA Idea: Maximum Variance

 Project *D*-dimensional data *x* onto an *M*-dimensional subspace that retains as much information as possible
 Data compression

PCA Idea: Maximum Variance

- Project *D*-dimensional data *x* onto an *M*-dimensional subspace that retains as much information as possible
 Data compression
- Informally: information = diversity = variance
 Maximize variance in projected space (Hotelling 1933)

Principal Component Analysis

Marc Deisenroth

PCA Objective: Maximum Variance

Linear relationships:

$$z = B^{\top} x$$
, $\tilde{x} = B z$

- $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_M] \in \mathbb{R}^{D \times M}$ is an orthogonal matrix
- Columns of **B** are an ONB of an *M*-dimensional subspace of \mathbb{R}^D

PCA Objective: Maximum Variance

Linear relationships:

$$z = B^{\top} x$$
, $\tilde{x} = B z$

- $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_M] \in \mathbb{R}^{D \times M}$ is an orthogonal matrix
- Columns of **B** are an ONB of an *M*-dimensional subspace of \mathbb{R}^D
- ▶ Find B = [b₁,..., b_M] so that the variance in the projected space is maximized

$$\max_{\boldsymbol{b}_1,\dots,\boldsymbol{b}_M} \mathbb{V}[\boldsymbol{z}] = \max_{\boldsymbol{b}_1,\dots,\boldsymbol{b}_M} \mathbb{V}[\boldsymbol{B}^\top \boldsymbol{x}]$$

s.t. $\|\boldsymbol{b}_1\| = 1 = \dots = \|\boldsymbol{b}_M\|$

Constrained optimization problem

• Maximize variance of first coordinate of $z \in \mathbb{R}^M$:

$$V_1 := \mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^N z_{n1}^2$$

▶ Empirical variance of the training dataset

• Maximize variance of first coordinate of $z \in \mathbb{R}^M$:

$$V_1 := \mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^N z_{n1}^2$$

Empirical variance of the training dataset

• First coordinate of *z*^{*n*} is

$$z_{n1} = \boldsymbol{b}_1^\top \boldsymbol{x}_n$$

➤ Coordinate of orthogonal projection of *x_n* onto span[*b*₁]
 (1-dimensional subspace spanned by *b*₁)

• Maximize variance of first coordinate of $z \in \mathbb{R}^M$:

$$V_1 := \mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^N z_{n1}^2$$

▶ Empirical variance of the training dataset

• First coordinate of *z*^{*n*} is

$$z_{n1} = \boldsymbol{b}_1^\top \boldsymbol{x}_n$$

▶ Coordinate of orthogonal projection of *x_n* onto span[*b*₁]
 (1-dimensional subspace spanned by *b*₁)

$$V[z_1] =$$

• Maximize variance of first coordinate of $z \in \mathbb{R}^M$:

$$V_1 := \mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^N z_{n1}^2$$

Empirical variance of the training dataset

• First coordinate of *z*^{*n*} is

$$z_{n1} = \boldsymbol{b}_1^\top \boldsymbol{x}_n$$

➤ Coordinate of orthogonal projection of *x_n* onto span[*b*₁]
 (1-dimensional subspace spanned by *b*₁)

$$\mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{b}_1^{\mathsf{T}} \mathbf{x}_n)^2 = \frac{1}{N} \sum_{n=1}^{N} \mathbf{b}_1^{\mathsf{T}} \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}} \mathbf{b}_1$$
$$= \mathbf{b}_1^{\mathsf{T}} \left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}} \right) \mathbf{b}_1 = \mathbf{b}_1^{\mathsf{T}} \mathbf{S} \mathbf{b}_1$$

Maximize variance

$$\max_{\bm{b}_1, \|\bm{b}_1\|^2 = 1} \mathbb{V}[z_1] = \max_{\bm{b}_1, \|\bm{b}_1\|^2 = 1} \bm{b}_1^\top \bm{S} \bm{b}_1$$

Maximize variance

$$\max_{\boldsymbol{b}_1, \|\boldsymbol{b}_1\|^2 = 1} \mathbb{V}[z_1] = \max_{\boldsymbol{b}_1, \|\boldsymbol{b}_1\|^2 = 1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1$$

• Lagrangian:

$$L(\boldsymbol{b}_1, \boldsymbol{\lambda}) = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \boldsymbol{\lambda}_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1)$$

Discuss with your neighbors and find λ_1 and b_1

Maximize variance

$$\max_{\boldsymbol{b}_1, \|\boldsymbol{b}_1\|^2 = 1} \mathbb{V}[z_1] = \max_{\boldsymbol{b}_1, \|\boldsymbol{b}_1\|^2 = 1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1$$

• Lagrangian:

$$L(\boldsymbol{b}_1,\boldsymbol{\lambda}) = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \boldsymbol{\lambda}_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1)$$

Discuss with your neighbors and find λ_1 and b_1

• Setting the gradients w.r.t. b_1 and λ_1 to **0** yields

$$egin{aligned} m{S}m{b}_1 &= \lambda_1m{b}_1 \ m{b}_1^{ op}m{b}_1 &= 1 \end{aligned}$$

- ► *b*¹ is an eigenvector of the data covariance matrix *S*
- λ₁ is the corresponding eigenvalue

Principal Component Analysis

Marc Deisenroth

•
$$S\boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1$$

 $\mathbb{V}[z_1] = \boldsymbol{b}_1^\top S \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\top \boldsymbol{b}_1 = \lambda_1$

▶ Variance retained by first coordinate corresponds to eigenvalue λ_1

•
$$S\boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1$$

 $\mathbb{V}[z_1] = \boldsymbol{b}_1^\top S \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\top \boldsymbol{b}_1 = \lambda_1$

▶ Variance retained by first coordinate corresponds to eigenvalue λ_1

 \blacktriangleright Choose eigenvector b_1 associated with the largest eigenvalue

•
$$S\boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1$$

 $\mathbb{V}[z_1] = \boldsymbol{b}_1^\top S \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\top \boldsymbol{b}_1 = \lambda_1$

▶ Variance retained by first coordinate corresponds to eigenvalue λ_1

 \blacktriangleright Choose eigenvector b_1 associated with the largest eigenvalue

- Projection:
- Coordinate:

Direction with Maximal Variance

Maximizing the variance means to choose the direction b_1 as the eigenvector of the data covariance matrix *S* that is associated with the largest eigenvalue λ_1 of *S*.

•
$$S\boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1$$

 $\mathbb{V}[z_1] = \boldsymbol{b}_1^\top S \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\top \boldsymbol{b}_1 = \lambda_1$

▶ Variance retained by first coordinate corresponds to eigenvalue λ_1

 \blacktriangleright Choose eigenvector b_1 associated with the largest eigenvalue

• Projection:
$$\tilde{x}_n = b_1 b_1^\top x_n$$

• Coordinate:
$$z_{n1} = \boldsymbol{b}_1^\top \boldsymbol{x}_n$$

Direction with Maximal Variance

Maximizing the variance means to choose the direction b_1 as the eigenvector of the data covariance matrix *S* that is associated with the largest eigenvalue λ_1 of *S*.

M-dimensional Subspace with Maximum Variance

General Result

The *M*-dimensional subspace of \mathbb{R}^D that retains the most variance is spanned by the *M* eigenvectors of the data covariance matrix *S* that are associated with the *M* largest eigenvalues of *S*. (e.g., Bishop 2006)

Example: MNIST Embedding (Training Set)

Embedding of handwritten '0' and '1' digits (28 × 28 pixels) into a two-dimensional subspace, spanned by the first two principal components.

Principal Component Analysis

Marc Deisenroth

Example: MNIST Reconstruction (Test Set)

 Reconstructions of original digits as the number of principal components increases

Principal Component Analysis

Marc Deisenroth

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

Refresher: Orthogonal Projection onto Subspaces

- Basis $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_M$ of a subspace $U \subset \mathbb{R}^D$
- Define $\boldsymbol{B} = [\boldsymbol{b}_1, ..., \boldsymbol{b}_M] \in \mathbb{R}^{D \times M}$
- Project $x \in \mathbb{R}^D$ onto subspace U:

$$\pi_U(\mathbf{x}) = \tilde{\mathbf{x}} = \mathbf{B}(\mathbf{B}^\top \mathbf{B})^{-1} \mathbf{B}^\top \mathbf{x}$$

If *b*₁,..., *b*_M form an orthonormal basis (*b*^T_i *b*_j = δ_{ij}), then the projection simplifies to

$$\tilde{x} = BB^{\top}x$$

PCA Objective: Minimize Reconstruction Error

 Objective: Find orthogonal projection that minimizes the average squared projection/reconstruction error

$$J = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \tilde{\mathbf{x}}_n \right\|^2$$

where $\tilde{x}_n = \pi_U(x_n)$ is the projection of x_n onto U

Derivation (1)

• Assume an orthonormal basis of $\mathbb{R}^D = \operatorname{span}[\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$, such that $\boldsymbol{b}_i^\top \boldsymbol{b}_j = \delta_{ij}$

Derivation (1)

- Assume an orthonormal basis of $\mathbb{R}^D = \operatorname{span}[\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$, such that $\boldsymbol{b}_i^\top \boldsymbol{b}_j = \delta_{ij}$
- Every data point *x* can be written as a linear combination of the basis vectors:

$$\boldsymbol{x} = \sum_{d=1}^{D} \eta_d \boldsymbol{b}_d = \boldsymbol{B} \boldsymbol{\eta}, \quad \boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$$
- Assume an orthonormal basis of $\mathbb{R}^D = \operatorname{span}[\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$, such that $\boldsymbol{b}_i^\top \boldsymbol{b}_j = \delta_{ij}$
- Every data point *x* can be written as a linear combination of the basis vectors:

$$\boldsymbol{x} = \sum_{d=1}^{D} \eta_d \boldsymbol{b}_d = \boldsymbol{B} \boldsymbol{\eta}, \quad \boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$$

▶ Rotation of the standard coordinates to a new coordinate system defined by the basis $(b_1, ..., b_D)$.

- Assume an orthonormal basis of $\mathbb{R}^D = \operatorname{span}[\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$, such that $\boldsymbol{b}_i^\top \boldsymbol{b}_j = \delta_{ij}$
- Every data point *x* can be written as a linear combination of the basis vectors:

$$\boldsymbol{x} = \sum_{d=1}^{D} \eta_d \boldsymbol{b}_d = \boldsymbol{B} \boldsymbol{\eta}, \quad \boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$$

▶ Rotation of the standard coordinates to a new coordinate system defined by the basis $(b_1, ..., b_D)$.

▶ Original coordinates x_d are replaced by η_d , d = 1, ..., D

- Assume an orthonormal basis of $\mathbb{R}^D = \operatorname{span}[\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$, such that $\boldsymbol{b}_i^\top \boldsymbol{b}_j = \delta_{ij}$
- Every data point *x* can be written as a linear combination of the basis vectors:

$$\boldsymbol{x} = \sum_{d=1}^{D} \eta_d \boldsymbol{b}_d = \boldsymbol{B} \boldsymbol{\eta}, \quad \boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_D]$$

▶ Rotation of the standard coordinates to a new coordinate system defined by the basis $(b_1, ..., b_D)$.

▶ Original coordinates x_d are replaced by η_d , d = 1, ..., D

• Obtain $\eta_d = \mathbf{x}^\top \mathbf{b}_d$, such that

$$oldsymbol{x} = \sum_{d=1}^{D} (oldsymbol{x}^{ op} oldsymbol{b}_d) oldsymbol{b}_d$$

Objective

Approximate

$$\boldsymbol{x} = \sum_{d=1}^{D} \eta_d \boldsymbol{b}_d$$
 with $\tilde{\boldsymbol{x}} = \sum_{m=1}^{M} z_m \boldsymbol{b}_m$

using *M* ≪ *D* many basis vectors → **Projection** onto a lower-dimensional subspace

Objective

Approximate

$$\boldsymbol{x} = \sum_{d=1}^{D} \eta_d \boldsymbol{b}_d$$
 with $\tilde{\boldsymbol{x}} = \sum_{m=1}^{M} z_m \boldsymbol{b}_m$

using *M* ≪ *D* many basis vectors → **Projection** onto a lower-dimensional subspace

Derivation (3): Objective

Derivation (3): Objective

Choose coordinates *z_{mn}* and basis vectors *b*₁,..., *b_D* such that the average squared reconstruction error

$$J_M = \frac{1}{N} \sum_{n=1}^N \|\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n\|^2$$

is minimized

Derivation (3): Objective

Choose coordinates *z_{mn}* and basis vectors *b*₁,..., *b_D* such that the average squared reconstruction error

$$J_M = \frac{1}{N} \sum_{n=1}^N \|\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n\|^2$$

is minimized

 \blacktriangleright Compute gradients of J_M w.r.t. all variables, set to **0**, solve

Principal Component Analysis

Marc Deisenroth

Derivation (4): Optimal Coordinates

Necessary condition for optimum:

$$\frac{\partial J_M}{\partial z_{mn}} = 0 \implies z_{mn} = \boldsymbol{x}_n^\top \boldsymbol{b}_m, \qquad m = 1, \dots, M$$

- The optimal projection is the orthogonal projection
- The optimal coordinate *z_{mn}* is the orthogonal projection of *x_n* onto the one-dimensional subspace spanned by *b_m*
- (b₁,..., b_D) is ONB ▶ span[b_{M+1},..., b_D] is orthogonal complement of principal subspace (span[b₁,..., b_M])
- ► If

$$\boldsymbol{x}_n = \sum_{d=1}^D \eta_{dn} \boldsymbol{b}_d$$
 and $\tilde{\boldsymbol{x}}_n = \sum_{m=1}^M z_{mn} \boldsymbol{b}_m$

then $\eta_{mn} = z_{mn}$ for $m = 1, \ldots, M$

▶ Minimum error is given by the orthogonal projection of x_n onto the principal subspace spanned by b_1, \ldots, b_M

Principal Component Analysis

Derivation (5): Displacement Vector

Approximation error only plays a role in dimensions M + 1, ..., D:

$$oldsymbol{x}_n - oldsymbol{ ilde{x}}_n = \sum_{j=M+1}^D ig(oldsymbol{x}_n^ opoldsymbol{b}_jig)oldsymbol{b}_j$$

Derivation (5): Displacement Vector

Approximation error only plays a role in dimensions M + 1, ..., D:

$$oldsymbol{x}_n - oldsymbol{ ilde{x}}_n = \sum_{j=M+1}^D ig(oldsymbol{x}_n^{ op}oldsymbol{b}_jig)oldsymbol{b}_j$$

▶ Displacement vector $x_n - \tilde{x}_n$ lies in orthogonal complement U^{\perp} of principal subspace U (linear combination of the b_j for j = M + 1, ..., D)

From the previous slide:

$$\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n = \sum_{j=M+1}^D (\boldsymbol{x}_n^\top \boldsymbol{b}_j) \boldsymbol{b}_j$$

From the previous slide:

$$oldsymbol{x}_n - oldsymbol{ ilde{x}}_n = \sum_{j=M+1}^D (oldsymbol{x}_n^{ op} oldsymbol{b}_j) oldsymbol{b}_j$$

Let's compute our reconstruction error:

$$J_M = \frac{1}{N} \sum_{n=1}^N \|\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n\|^2 = \frac{1}{N} \sum_{n=1}^N (\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n)^\top (\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n)$$

From the previous slide:

$$oldsymbol{x}_n - oldsymbol{ ilde{x}}_n = \sum_{j=M+1}^D (oldsymbol{x}_n^{ op} oldsymbol{b}_j) oldsymbol{b}_j$$

Let's compute our reconstruction error:

$$J_{M} = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_{n} - \tilde{\mathbf{x}}_{n}\|^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \tilde{\mathbf{x}}_{n})^{\top} (\mathbf{x}_{n} - \tilde{\mathbf{x}}_{n})$$
$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{j=M+1}^{D} (\mathbf{x}_{n}^{\top} \mathbf{b}_{j})^{2}$$

From the previous slide:

$$\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n = \sum_{j=M+1}^D (\boldsymbol{x}_n^\top \boldsymbol{b}_j) \boldsymbol{b}_j$$

Let's compute our reconstruction error:

$$J_M = \frac{1}{N} \sum_{n=1}^N \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2 = \frac{1}{N} \sum_{n=1}^N (\mathbf{x}_n - \tilde{\mathbf{x}}_n)^\top (\mathbf{x}_n - \tilde{\mathbf{x}}_n)$$
$$= \frac{1}{N} \sum_{n=1}^N \sum_{j=M+1}^D (\mathbf{x}_n^\top \mathbf{b}_j)^2$$
$$= \sum_{j=M+1}^D \mathbf{b}_j^\top S \mathbf{b}_j$$

where $S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^{\top}$ is the data covariance matrix

Principal Component Analysis

Marc Deisenroth

- What remains: Minimize J_M w.r.t. b_j under the constraint that the b_j form an orthonormal basis.
- Similar setting to maximum variance perspective: Instead of maximizing the variance in the principal subspace, we minimize the variance in the orthogonal complement of the principal subspace
- End up with **eigenvalue problem**:

$$Sb_j = \lambda_j b_j$$
, $j = D + 1, \dots, M$

▶ Find the eigenvectors *b*_{*i*} of the data covariance matrix *S*

- ▶ Find the eigenvectors *b_i* of the data covariance matrix *S*
- Corresponding value of the squared reconstruction error:

$$J_M = \sum_{j=M+1}^D \lambda_j$$

i.e., the sum of the eigenvalues associated with eigenvectors not in the principle subspace

- ▶ Find the eigenvectors *b*_{*j*} of the data covariance matrix *S*
- Corresponding value of the squared reconstruction error:

$$J_M = \sum_{j=M+1}^D \lambda_j$$

i.e., the sum of the eigenvalues associated with eigenvectors not in the principle subspace

Minimizing J_M requires us to choose the M eigenvectors as the principle subspace that are associated with the M largest eigenvalues.

• Objective: Project *x* onto an affine subspace μ + span[b_1].

Principal Component Analysis

► Shift scenario to the origin (affine subspace ~→ vector subspace)

Principal Component Analysis

• Shift *x* as well (onto $x - \mu$).

• Orthogonal projection of $x - \mu$ onto subspace spanned by b_1

Principal Component Analysis

• Move projected point $\pi_{U_1}(x)$ back into original (affine) setting.

Principal Component Analysis

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

Key Steps of PCA

- 1. Compute the empirical mean μ of the data
- 2. Mean subtraction: Replace all data points x_i with $\bar{x}_i = x_i \mu$.
- 3. Standardization: Divide the data by its standard deviation in each dimension: $\hat{X}^{(d)} = \bar{X}/\sigma(X^{(d)})$ for d = 1, ..., D.
- 4. Eigendecomposition of the data covariance matrix: Compute the eigenvectors (orthonormal) and eigenvalues of the data covariance matrix *S*
- 5. Orthogonal projection: Choose the eigenvectors associated with the M largest eigenvalues to be the basis of the principal subspace. Obtain \tilde{X}
- 6. Moving back to original data space: $\tilde{X}^{(d)} = \tilde{X}^{(d)}\sigma(X^{(d)}) + \mu_d$

PCA Algorithm

Dataset

Principal Component Analysis

Mean subtraction

Standardization (variance 1 in each direction)

• Eigendecomposition of the data covariance matrix

Orthogonal projection onto the principal subspace

Moving back to the original data space

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

PCA for High-Dimensional Data

- ▶ Fewer data points than dimensions, i.e., *N* < *D*.
- At least D N + 1 eigenvalues 0.
- Computation time for computing eigenvalues of data covariance matrix S: O(D³)
- ► Rephrase PCA

Reformulating PCA

▶ Define *X* to be the *D* × *N*-dimensional centered data matrix, whose *n*th row is $(x_n - \mathbb{E}[x])^\top$ ▶ Mean normalization

Reformulating PCA

- ▶ Define *X* to be the *D* × *N*-dimensional centered data matrix, whose *n*th row is $(x_n \mathbb{E}[x])^\top$ ▶ Mean normalization
- Corresponding covariance: $S = \frac{1}{N} X X^{\top}$
Reformulating PCA

- ▶ Define *X* to be the *D* × *N*-dimensional centered data matrix, whose *n*th row is $(x_n \mathbb{E}[x])^\top$ ▶ Mean normalization
- Corresponding covariance: $S = \frac{1}{N} X X^{\top}$
- Corresponding eigenvector equation:

$$S\boldsymbol{b}_i = \lambda_i \boldsymbol{b}_i \iff \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{b}_i = \lambda_i \boldsymbol{b}_i$$

Reformulating PCA

- ▶ Define *X* to be the *D* × *N*-dimensional centered data matrix, whose *n*th row is $(x_n \mathbb{E}[x])^\top$ ▶ Mean normalization
- Corresponding covariance: $S = \frac{1}{N}XX^{\top}$
- Corresponding eigenvector equation:

$$S\boldsymbol{b}_i = \lambda_i \boldsymbol{b}_i \iff \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{b}_i = \lambda_i \boldsymbol{b}_i$$

• Transformation (left-multiply by X^{\top}):

$$\frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{b}_{i} = \lambda_{i} \boldsymbol{b}_{i} \quad \Longleftrightarrow \quad \frac{1}{N} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \underbrace{\boldsymbol{X}^{\mathsf{T}} \boldsymbol{b}_{i}}_{=:\boldsymbol{v}_{i}} = \lambda_{i} \underbrace{\boldsymbol{X}^{\mathsf{T}} \boldsymbol{b}_{i}}_{=:\boldsymbol{v}_{i}}$$

v_i is an eigenvector of the *N* × *N*-matrix ¹/_N*X*^T*X*, which has the same non-zero eigenvalues as the original covariance matrix.
 → Get eigenvalues in *O*(*N*³) instead of *O*(*D*³).

The new eigenvalue/eigenvector equation is

$$\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i$$

where $v_i = X^{\top} b_i$

The new eigenvalue/eigenvector equation is

$$\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i$$

where $v_i = X^{\top} b_i$

• We want to recover the original eigenvectors b_i of the data covariance matrix $S = \frac{1}{N}XX^{\top}$

The new eigenvalue/eigenvector equation is

$$\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i$$

where $v_i = X^{\top} b_i$

- We want to recover the original eigenvectors b_i of the data covariance matrix $S = \frac{1}{N}XX^{\top}$
- Left-multiply eigenvector equation by *X* yields

$$\underbrace{\frac{1}{N} X X^{\top}}_{=S} X v_i = \lambda_i X v_i$$

and we recover Xv_i as an eigenvector of S associated with eigenvalue λ_i

The new eigenvalue/eigenvector equation is

$$\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i$$

where $\boldsymbol{v}_i = \boldsymbol{X}^\top \boldsymbol{b}_i$

- We want to recover the original eigenvectors b_i of the data covariance matrix $S = \frac{1}{N}XX^{\top}$
- Left-multiply eigenvector equation by *X* yields

$$\underbrace{\frac{1}{N} X X^{\top}}_{=S} X v_i = \lambda_i X v_i$$

and we recover Xv_i as an eigenvector of S associated with eigenvalue λ_i

• Make sure to normalize Xv_i so that $||Xv_i|| = 1$

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

Latent Variable Perspective

Model:

$$oldsymbol{x} = oldsymbol{B} oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon}$$
 , $oldsymbol{\epsilon} \sim \mathcal{N}ig(oldsymbol{0},\,\sigma^2oldsymbol{I}ig)$

Latent Variable Perspective

Model:

$$oldsymbol{x} = oldsymbol{B} oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon}$$
 , $oldsymbol{\epsilon} \sim \mathcal{N}ig(oldsymbol{0},\,\sigma^2 oldsymbol{I}ig)$

Generative process:

$$egin{aligned} & z \sim \mathcal{N}ig(\mathbf{0}, \, oldsymbol{I}ig) \ & x | z \sim \mathcal{N}ig(x | B z + \mu, \, \sigma^2 oldsymbol{I}ig) \end{aligned}$$

"Standard" PCA as a special case,

- "Standard" PCA as a special case,
- Comes with a likelihood function, and we can explicitly deal with noisy observations

- "Standard" PCA as a special case,
- Comes with a likelihood function, and we can explicitly deal with noisy observations
- Allow for Bayesian model comparison via the marginal likelihood

- "Standard" PCA as a special case,
- Comes with a likelihood function, and we can explicitly deal with noisy observations
- Allow for Bayesian model comparison via the marginal likelihood
- ▶ PCA as a generative model, which allows us to simulate new data

- "Standard" PCA as a special case,
- Comes with a likelihood function, and we can explicitly deal with noisy observations
- Allow for Bayesian model comparison via the marginal likelihood
- ▶ PCA as a generative model, which allows us to simulate new data
- Straightforward connections to related algorithms and models (e.g., ICA)

- "Standard" PCA as a special case,
- Comes with a likelihood function, and we can explicitly deal with noisy observations
- Allow for Bayesian model comparison via the marginal likelihood
- ▶ PCA as a generative model, which allows us to simulate new data
- Straightforward connections to related algorithms and models (e.g., ICA)
- Deal with data dimensions that are missing at random by applying Bayes' theorem

► Model:

$$oldsymbol{x} = oldsymbol{B} oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon}$$
 , $oldsymbol{\epsilon} \sim \mathcal{N}ig(oldsymbol{0},\,\sigma^2oldsymbol{I}ig)$

Model:

$$oldsymbol{x} = oldsymbol{B} oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon}$$
 , $oldsymbol{\epsilon} \sim \mathcal{N}ig(oldsymbol{0},\,\sigma^2oldsymbol{I}ig)$

PPCA Likelihood (integrate out the latent variables):

$$p(\mathbf{x}|\mathbf{B},\boldsymbol{\mu},\sigma^2) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\sigma^2)p(\mathbf{z})d\mathbf{z}$$
$$= \int \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z}+\boldsymbol{\mu},\sigma^2\mathbf{I})\mathcal{N}(\mathbf{z}|\mathbf{0},\mathbf{I})d\mathbf{z}$$

Model:

$$oldsymbol{x} = oldsymbol{B} oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon}$$
 , $oldsymbol{\epsilon} \sim \mathcal{N}ig(oldsymbol{0},\,\sigma^2oldsymbol{I}ig)$

PPCA Likelihood (integrate out the latent variables):

$$p(\mathbf{x}|\mathbf{B},\boldsymbol{\mu},\sigma^2) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\sigma^2)p(\mathbf{z})d\mathbf{z}$$
$$= \int \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z}+\boldsymbol{\mu},\sigma^2\mathbf{I})\mathcal{N}(\mathbf{z}|\mathbf{0},\mathbf{I})d\mathbf{z}$$

▶ Is Gaussian with mean and covariance

Model:

$$oldsymbol{x} = oldsymbol{B} oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon}$$
 , $oldsymbol{\epsilon} \sim \mathcal{N}ig(oldsymbol{0},\,\sigma^2oldsymbol{I}ig)$

PPCA Likelihood (integrate out the latent variables):

$$p(\mathbf{x}|\mathbf{B},\boldsymbol{\mu},\sigma^2) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\sigma^2)p(\mathbf{z})d\mathbf{z}$$
$$= \int \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z}+\boldsymbol{\mu},\sigma^2\mathbf{I})\mathcal{N}(\mathbf{z}|\mathbf{0},\mathbf{I})d\mathbf{z}$$

▶ Is Gaussian with mean and covariance

$$\mathbb{E}[x] = \mathbb{E}_{z}[Bz + \mu + \epsilon] = \mu$$
$$\mathbb{V}[x] = \mathbb{V}_{z}[Bz + \mu + \epsilon] = BB^{\top} + \sigma^{2}I$$

Joint Distribution and Posterior

Joint distribution of observed and latent variables

$$p(\mathbf{x}, \mathbf{z} | \mathbf{B}, \boldsymbol{\mu}, \sigma^2) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{B} \mathbf{B}^\top + \sigma^2 \mathbf{I} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{I} \end{bmatrix} \right)$$

Posterior via Gaussian conditioning:

$$p(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{B}, \boldsymbol{\mu}, \sigma^2) = \mathcal{N}(\boldsymbol{z} \mid \boldsymbol{m}, \boldsymbol{C})$$
$$\boldsymbol{m} = \boldsymbol{B}^\top (\boldsymbol{B}\boldsymbol{B}^\top + \sigma^2 \boldsymbol{I})^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$$
$$\boldsymbol{C} = \boldsymbol{I} - \boldsymbol{B}^\top (\boldsymbol{B}\boldsymbol{B}^\top + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{B}$$

▶ For a new observation x_* compute the posterior on $p(z_*|x_*, X)$ and examine it (e.g., variance).

• Generate new (plausible) data from this posterior

Maximum Likelihood Estimation

- In PPCA, we can determine the parameters μ, B, σ² via maximum likelihood estimation. PPCA Likelihood: p(X|μ, B, σ²)
- Result (e.g., Tipping & Bishop (1999)):

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \quad \Longrightarrow \text{Sample mean}$$

$$B_{\rm ML} = T(\Lambda - \sigma^2 I)^{\frac{1}{2}} R$$

$$\sigma_{\rm ML}^2 = \frac{1}{D - M} \sum_{j=M+1}^{D} \lambda_j \quad \Longrightarrow \text{Average variance in orth. complement}$$

 For σ → 0 the maximum likelihood solution gives the same result as PCA (see mml-book.com)

Overview

Introduction

Setting

Maximum Variance Perspective

Projection Perspective

PCA Algorithm

PCA in High Dimensions

Probabilistic PCA

Related Models

Related Models

- Factor analysis: Axis-aligned noise (instead of isotropic)
- ► Independent component analysis: Non-Gaussian prior p(z) = ∏_m p_m(z_m)
- Kernel PCA
- Bayesian PCA: Priors on parameters *B*, μ, σ²
 - Approximate
 inference

- Gaussian process latent variable model (GP-LVM): Replace linear mapping in Bayesian PCA with Gaussian process. Point estimate of z
- ▶ Bayesian GP-LVM maintains a distribution on *z* ▶ Approximate inference

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018

- ▶ PCA: Algorithm for linear dimensionality reduction
- Orthogonal projection of data onto a lower-dimensional subspace
 - Maximizes the variance of the projection
 - Minimizes the average squared projection/reconstruction error
- High-dimensional data
- Probabilistic PCA