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Overview

Introduction
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High-Dimensional Data

» Real-world data is often high dimensional
» Challenges:

> Difficult to analyze
» Difficult to visualize
» Difficult to interpret
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Properties of High-dimensional Data
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» Many dimensions are unnecessary
» Data often lives on a low-dimensional manifold

» Dimensionality reduction finds the relevant dimensions.
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Background: Coordinate Representations
Consider R? with the canonical basis e; = [1,0]", e, = [0,1].

X = [g} = 5eq + 3ey Linear combination of basis vectors

» Coordinates of x w.r.t. (e, e): [5,3]
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Background: Coordinate Representations
Consider R? with the canonical basis e; = [1,0]", e, = [0,1].

5 . .. .
X = [3} = be1 + 3ey Linear combination of basis vectors

» Coordinates of x w.r.t. (e1,e2): [5,3]
Consider the vectors of the form

X = [2]6]R2, zeR

P Write them as Oeq + zes.
> Only remember/store the coordinate/code z of the e, vector
» Compression
» Set of ¥ vectors forms a vector subspace U < R? with dim(U) = 1

because U = span|e].
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Overview

Setting
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PCA Setting

original compressed

Encoder Decoder

» Dataset X' := {x1,...,xn}, x, € RP
» Data matrix X := [xq,...,xn] € RP*N » Often N x D matrix
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PCA Setting

original compressed

Encoder Decoder

» Dataset X' := {x1,...,xn}, x, € RP
» Data matrix X := [x1,...,xn] € RP*N » Often N x D matrix
» Without loss of generality: E[X] = 0 » Centered data

» Data covariance matrix
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PCA Setting

original

v

v

v

Data matrix X := [xq,...
Without loss of generality: E[X'] = 0 M Centered data

compressed

Encoder Decoder

Dataset X := {x1,...,xn}, x, € RP

,xn] € RP*N »» Often N x D matrix

» Data covariance matrix S = %XX T e RDxD

v

Linear relationships between latent code z and data x:

z=BTx, X = Bz

» B = [by,...,by] € RP*M is an orthogonal matrix

Principal Component Analysis
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Low-Dimensional Embedding

original compressed

Encoder Decoder "

v

Find an M-dimensional subspace U = RP onto which we project
the data

v

X = mry(x) is the projection of x onto U

v

Find projections ¥ that are as similar to x as possible
» Find basis vectors by, ..., by

» Compression loss incurs if M « D
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Overview

Maximum Variance Perspective

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018
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PCA Idea: Maximum Variance

» Project D-dimensional data x onto an M-dimensional subspace
that retains as much information as possible
» Data compression
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PCA Idea: Maximum Variance

» Project D-dimensional data x onto an M-dimensional subspace
that retains as much information as possible
» Data compression

» Informally: information = diversity = variance

» Maximize variance in projected space (Hotelling 1933)
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PCA Objective: Maximum Variance

» Linear relationships:
z=B"x , X=Bz

» B = [by,...,by] € RP*M is an orthogonal matrix

» Columns of B are an ONB of an M-dimensional subspace of RP

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 12



PCA Objective: Maximum Variance

v

Linear relationships:

z=BTx, X =Bz

v

B = [by,...,by] € RP*Mis an orthogonal matrix

v

Columns of B are an ONB of an M-dimensional subspace of RP

v

Find B = [by, ..., bym] so that the variance in the projected space
is maximized
max V[z] = max V[Bx]
by,...bm by,...bm
st|bi]=1=...=|bum|

» Constrained optimization problem
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Direction with Maximal Variance (1)

» Maximize variance of first coordinate of z € RM;

V1 =V 21 N Z Zn

» Empirical variance of the training dataset
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Direction with Maximal Variance (1)

» Maximize variance of first coordinate of z e RM:

V1 =V 21 N Z Zn

» Empirical variance of the training dataset
» First coordinate of z;, is

T
an = bl xn

» Coordinate of orthogonal projection of x,, onto span|b |
(1-dimensional subspace spanned by b;)
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Direction with Maximal Variance (1)

» Maximize variance of first coordinate of z e RM:

V1 =V 21 N Z Zn

» Empirical variance of the training dataset
» First coordinate of z;, is

T
an = bl xn

» Coordinate of orthogonal projection of x,, onto span|b |
(1-dimensional subspace spanned by b;)

V(zi] =
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Direction with Maximal Variance (1)

» Maximize variance of first coordinate of z e RM:

V1 =V 21 N Z Zn

» Empirical variance of the training dataset
» First coordinate of z;, is

T
an = bl xn

» Coordinate of orthogonal projection of x,, onto span|b |
(1-dimensional subspace spanned by b;)

1 N
b, xn = — B blTxanln
N N n=1

1 N
= b/ (N anl xnx,'{) b, = b] Sb,
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Direction with Maximal Variance (2)
» Maximize variance

max V([z;] = max b Sbh;
by by =1 b by [*=1
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Direction with Maximal Variance (2)

» Maximize variance

max V([z;] = max b Sbh;
by by =1 b by [*=1

» Lagrangian:
L(b1,A) = b] Sby + A1(1—b] by)

Discuss with your neighbors and find A; and b,
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Direction with Maximal Variance (2)

» Maximize variance

max V([z;] = max b Sbh;
by by =1 b by [*=1

v

Lagrangian:
L(b1,A) = b] Sby + A1(1—b] by)

Discuss with your neighbors and find A; and b,

v

Setting the gradients w.r.t. by and A4 to 0 yields
Sbl = )\1171
b{b =1

» b is an eigenvector of the data covariance matrix S

v

A1 is the corresponding eigenvalue

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Direction with Maximal Variance (3)

» Sby = Mbq
V[z1] = b{ Sby = A1b{ by = A

M Variance retained by first coordinate corresponds to
eigenvalue Ay
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Direction with Maximal Variance (3)
» Sby = Mbq
V[z1] = b{ Sby = A1b{ by = A

M Variance retained by first coordinate corresponds to
eigenvalue Ay
» Choose eigenvector b; associated with the largest eigenvalue
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Direction with Maximal Variance (3)

» Sb; = AMby
V[z1] = b{ Sby = A1b{ by = A
M Variance retained by first coordinate corresponds to
eigenvalue Ay
» Choose eigenvector b; associated with the largest eigenvalue
*» Projection:

» Coordinate:

Direction with Maximal Variance

Maximizing the variance means to choose the direction b as the
eigenvector of the data covariance matrix S that is associated with the
largest eigenvalue A; of S.
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Direction with Maximal Variance (3)

» Sb; = AMby
V[z1] = b{ Sby = A1b{ by = A
M Variance retained by first coordinate corresponds to
eigenvalue Ay
» Choose eigenvector b; associated with the largest eigenvalue
» Projection: ¥, = blblTxn

» Coordinate: z,,; = blTxn

Direction with Maximal Variance

Maximizing the variance means to choose the direction b as the
eigenvector of the data covariance matrix S that is associated with the
largest eigenvalue A; of S.
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M-dimensional Subspace with Maximum Variance

General Result

The M-dimensional subspace of R that retains the most variance is
spanned by the M eigenvectors of the data covariance matrix S that
are associated with the M largest eigenvalues of S. (e.g., Bishop 2006)

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 16



Example: MNIST Embedding (Training Set)

» Embedding of handwritten ‘0" and ‘1" digits (28 x 28 pixels) into
a two-dimensional subspace, spanned by the first two principal
components.

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 17



Example: MNIST Reconstruction (Test Set)

Da0E -
BEEHE-
DEEHE-
DB 0 HE--
oDB0Ba--

» Reconstructions of original digits as the number of principal
components increases
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Overview

Projection Perspective

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018
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Refresher: Orthogonal Projection onto Subspaces

v

Basis by, ..., by of a subspace U < RP
Define B = [by, ..., by] € RP*M

Project x € RP onto subspace U:

v

v

mu(x) =% = B(B'B)"'BTx

v

If by,..., by form an orthonormal basis (bin]- = Jij), then the
projection simplifies to

% =BB'x

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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PCA Objective: Minimize Reconstruction Error

*» Objective: Find orthogonal projection that minimizes the average
squared projection/reconstruction error

1 N 2
] = Nﬂz::l”xn—in‘

where %, = my;(x,) is the projection of x, onto U

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 21



Derivation (1)

» Assume an orthonormal basis of RP = span[by, ..

that bl—l—b] = (51']'

.,bp], such

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Derivation (1)

» Assume an orthonormal basis of RP = span[by,...,bp], such
that b b; = J;;

» Every data point x can be written as a linear combination of the
basis vectors:

D
x:anbd:B”/ B:[bll"'/bD]
d=1
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Derivation (1)

» Assume an orthonormal basis of RP = span[by,...,bp], such
that b b; = J;;

» Every data point x can be written as a linear combination of the
basis vectors:

D
x:Zded:Bﬂl B:[bll"'/bD]
d=1

P Rotation of the standard coordinates to a new coordinate
system defined by the basis (by, ..., bp).
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Derivation (1)

» Assume an orthonormal basis of RP = span[by,...,bp], such
that b b; = J;;

» Every data point x can be written as a linear combination of the
basis vectors:

D
x:Zded:Bﬂl B:[bll"'/bD]
d=1

» Rotation of the standard coordinates to a new coordinate
system defined by the basis (by, ..., bp).
» Original coordinates x; are replaced by 75, d = 1,...,D
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Derivation (1)

» Assume an orthonormal basis of RP = span[by,...,bp], such
that b b; = J;;

» Every data point x can be written as a linear combination of the
basis vectors:

D
x:Zded:Bﬂl B:[bll"'/bD]
d=1

P Rotation of the standard coordinates to a new coordinate

system defined by the basis (by, ..., bp).
» Original coordinates x; are replaced by 75, d = 1,...,D
» Obtain 7y = x'b,, such that

D
= 2, (xTba)ba

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 22



Derivation (2)

Objective

Approximate

using M « D many basis vectors
» Projection onto a lower-dimensional subspace

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Derivation (2)

Objective

Approximate

using M « D many basis vectors
» Projection onto a lower-dimensional subspace
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Derivation (3): Objective

=
2
|

M
X Z Zmnbm
m=1

—. _—

g —
lower-dim. subspace
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Derivation (3): Objective

M
Xy Z Zmnbm
m=1

—_——————
lower-dim. subspace

» Choose coordinates z,,;; and basis vectors b,
average squared reconstruction error

1 N
Jm = N ;;1 |2n — 5Cn||2

is minimized

..., bp such that the
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Derivation (3): Objective

=
2
|

M
X Z Zmnbm
m=1

—_——————
lower-dim. subspace

» Choose coordinates z,,;; and basis vectors b,
average squared reconstruction error

1 N
Jm = N ;;1 |2n — 5Cn||2

is minimized

..., bp such that the

» Compute gradients of ) w.r.t. all variables, set to 0, solve

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018

24



Derivation (4): Optimal Coordinates

Necessary condition for optimum:

oIm
O0Zmn

=0 = zmnzx,jbm, m=1,... M

» The optimal projection is the orthogonal projection

» The optimal coordinate z,,, is the orthogonal projection of x;,
onto the one-dimensional subspace spanned by b,,

» (by,...,bp)is ONB M span[bpy1, ..., bp] is orthogonal
complement of principal subspace (span|by, ..., b))

> If

D 3 M
Xp = Zd:l Nanbg and X, = Zm:l Zinbm

then 7y = zmp form=1,..., M
» Minimum error is given by the orthogonal projection of x, onto the
principal subspace spanned by by, ..., by
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Derivation (5): Displacement Vector

6 L‘d‘
4
2 L0
5 0 nm O |
=T T A 7'
' Onm"’“ ° U
-2 ° 00
—4
—6
) 0 5
Ty

Principal Component Analysis

Approximation error only plays a role in
dimensions M +1,...,D:

D
Py T
Xp — Xy = Z (x, bj)b]-
j=M+1
Marc Deisenroth @AIMS Rwanda, October 4, 2018 26



Derivation (5): Displacement Vector

6 U4

! Approximation error only plays a role in

2 %J’ dimensions M +1,...,D:

0% O
& 0r—¢ ‘W""'" 7 D
) ° 001!:‘”00 xn - 5Cn = Z (x;ll—b]) b]
j=M+1
-1
—6
-5 0 5

» Displacement vector x,, — X, lies in orthogonal complement U+t of
principal subspace U (linear combination of the b; for
j=M+1,...,D)
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Derivation (5)

From the previous slide:

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Derivation (5)

From the previous slide:
D
Xp — Xp = 2 (x;b]-)b]-
j=M+1
Let’s compute our reconstruction error:
N
Im = N Z o6 — %l = N (%0 — %) " (30 — %)

n=1 n=1
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Derivation (5)

From the previous slide:

D
j=M+1

Let’s compute our reconstruction error:

(xn - in)T(xn - xn)

I
Zz| =

3
Il
—

Im

£

[
z|=
M=z

3
Il
—_

M=

—_

Il
zZ| =
=
1=
I )
= o) =
= ‘
.
R
=
\Q‘
e
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Derivation (5)

From the previous slide:
D

. T
Xp — Xp = Z (x, bj)b;
j=M+1
Let’s compute our reconstruction error:

N
|2 — 5CnH2 (X — Xy) xn

n=1

Jm =

Z[ =
M=z

3
Il
—_

(x)b;)?

I
2=
Mz
Il
=

—_
—.
—_

O =
Il

where § = & SN | x,x,) is the data covariance matrix

- xn)
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Derivation (6)

» What remains: Minimize Jy; w.r.t. b; under the constraint that the

b i form an orthonormal basis.

» Similar setting to maximum variance perspective: Instead of
maximizing the variance in the principal subspace, we minimize
the variance in the orthogonal complement of the principal

subspace

» End up with eigenvalue problem:

Sb]=/\]b], j=D+1,...,M

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 28



Derivation (7)

» Find the eigenvectors b i of the data covariance matrix S

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Derivation (7)

» Find the eigenvectors b i of the data covariance matrix S

» Corresponding value of the squared reconstruction error:
D
Ju= >, A
j=M+1

i.e., the sum of the eigenvalues associated with eigenvectors not
in the principle subspace
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Derivation (7)

» Find the eigenvectors b i of the data covariance matrix S

» Corresponding value of the squared reconstruction error:

D
Ju= >, A

j=M+1
i.e., the sum of the eigenvalues associated with eigenvectors not
in the principle subspace

» Minimizing [js requires us to choose the M eigenvectors as the
principle subspace that are associated with the M largest

eigenvalues.
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Geometric Interpretation

» Objective: Project x onto an affine subspace y + span[b;].

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Geometric Interpretation

» Shift scenario to the origin (affine subspace ~~ vector subspace)

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018

30



Geometric Interpretation

» Shift x as well (onto x — p).

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018
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Geometric Interpretation

» Orthogonal projection of x — u onto subspace spanned by b;
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Geometric Interpretation

» Move projected point 71y, (x) back into original (affine) setting.

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Overview

PCA Algorithm

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018
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Key Steps of PCA

1. Compute the empirical mean u of the data

2. Mean subtraction: Replace all data points x; with ¥; = x; — .

3. Standardization: Divide the data by its standard deviation in
each dimension: X = X/o(X9D)ford=1,...,D.

4. Eigendecomposition of the data covariance matrix: Compute the
eigenvectors (orthonormal) and eigenvalues of the data
covariance matrix S

5. Orthogonal projection: Choose the eigenvectors associated with
the M largest eigenvalues to be the basis of the principal
subspace. Obtain X

6. Moving back to original data space: X = X W (X@) 4y,

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 32



PCA Algorithm

Xy

» Dataset

Principal Component Analysis

[
[
2.5 0.0 2.5 5.0
Zy
Marc Deisenroth @AIMS Rwanda, October 4, 2018 33



PCA Algorithm: Step 1

» Mean subtraction

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018
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PCA Algorithm: Step 2

» Standardization (variance 1 in each direction)

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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PCA Algorithm: Step 3

i)

» Eigendecomposition of the data covariance matrix
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PCA Algorithm: Step 4

i)
+

4 \
—2.5 0.0 2.5 5.0
)

» Orthogonal projection onto the principal subspace

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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PCA Algorithm: Step 5

i)

7y

» Moving back to the original data space

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Overview

PCA in High Dimensions

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018
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PCA for High-Dimensional Data

v

Fewer data points than dimensions, i.e., N < D.

v

Atleast D — N + 1 eigenvalues 0.

v

Computation time for computing eigenvalues of data covariance
matrix S: O(D?)
Rephrase PCA

v

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018 40



Reformulating PCA

» Define X to be the D x N-dimensional centered data matrix,
whose nth row is (x, — E[x])" » Mean normalization

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Reformulating PCA

» Define X to be the D x N-dimensional centered data matrix,
whose nth row is (x, — E[x])" » Mean normalization

» Corresponding covariance: S = %XXT
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Reformulating PCA

» Define X to be the D x N-dimensional centered data matrix,
whose nth row is (x, — E[x])" » Mean normalization
» Corresponding covariance: S = %XXT

» Corresponding eigenvector equation:

1
Sbi = Aib; <= XX 'b; = Aib;
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Reformulating PCA

» Define X to be the D x N-dimensional centered data matrix,
whose nth row is (x, — E[x])" » Mean normalization
» Corresponding covariance: S = %XXT

» Corresponding eigenvector equation:
1
Sbi = Aib; <= LXX'bi = Aib;

» Transformation (left-multiply by X "):

1 1

—XX'bj=Ab; = =X'XX'b =A; X'b;

N N —— ——
=:0; =:0;

M v; is an eigenvector of the N x N-matrix %X TX, which has the
same non-zero eigenvalues as the original covariance matrix.
» Get eigenvalues in O(N?) instead of O(D3).

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Recovering the Original Eigenvectors

» The new eigenvalue/eigenvector equation is
1
NXTXUZ' = )\iv,-

where v; = X Tb;

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Recovering the Original Eigenvectors

» The new eigenvalue/eigenvector equation is
1
NXTX’UZ' = )\ivi

where v; = X Tb;
» We want to recover the original eigenvectors b; of the data
covariance matrix § = %XX T

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Recovering the Original Eigenvectors

» The new eigenvalue/eigenvector equation is
1
NXTXUZ' = Aivi

where v; = X ' b;

» We want to recover the original eigenvectors b; of the data

covariance matrix S = %XX T

» Left-multiply eigenvector equation by X yields

1
NXXT Xv; = A Xv;

—
=S

and we recover Xv; as an eigenvector of S associated with
eigenvalue A;
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Recovering the Original Eigenvectors

» The new eigenvalue/eigenvector equation is
1
NXTXUZ' = Aivi

where v; = X ' b;

» We want to recover the original eigenvectors b; of the data

covariance matrix S = %XX T

» Left-multiply eigenvector equation by X yields

1
NXXT Xv; = A Xv;

—
=S

and we recover Xv; as an eigenvector of S associated with
eigenvalue A;
» Make sure to normalize Xv; so that | Xv;| =1

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Overview

Probabilistic PCA

Principal Component Analysis

Marc Deisenroth
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Latent Variable Perspective

N

z

n=1,...,
-

» Model:
x=Bz+u+e, e~N(0,I)
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Latent Variable Perspective

N

z

n=1,...,
-

» Model:
x=Bz+u+e, e~N(0,I)

» Generative process:
z~N(0, I)
x|z ~ N (x| Bz +p, o°I)

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018
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Why is this useful?

» “Standard” PCA as a special case,

Principal Component Analysis

Marc Deisenroth

@AIMS Rwanda, October 4, 2018
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Why is this useful?

» “Standard” PCA as a special case,

» Comes with a likelihood function, and we can explicitly deal

with noisy observations
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Why is this useful?

» “Standard” PCA as a special case,

» Comes with a likelihood function, and we can explicitly deal
with noisy observations
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Why is this useful?

» “Standard” PCA as a special case,

» Comes with a likelihood function, and we can explicitly deal

with noisy observations

» Allow for Bayesian model comparison via the marginal
likelihood

» PCA as a generative model, which allows us to simulate new data

» Straightforward connections to related algorithms and models
(e.g., ICA)

» Deal with data dimensions that are missing at random by

applying Bayes’ theorem
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Likelihood

» Model:

Principal Component Analysis

x=Bz+u+e, e~N(0,0I)
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Likelihood

» Model:
x=Bz+u+e, e~N(0,0I)

» PPCA Likelihood (integrate out the latent variables):

p(x|B, u, o fp x|z, 4, 07)p(z)dz

:JN x|Bz+p, c*I)N (2|0, I)dz
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Likelihood

» Model:
x=Bz+u+e, e~N(0,0I)

» PPCA Likelihood (integrate out the latent variables):

p(x|B, u, o fpxlzw (z)dz
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Likelihood

» Model:
x=Bz+u+e, e~N(0,0I)

» PPCA Likelihood (integrate out the latent variables):

x’B ”ll fp x|z ”’ )
:JN x|Bz+p, c*I)N (2|0, I)dz
M Is Gaussian with mean and covariance

Elx| =E;[Bz+u+e€|=pn
V.[Bz+pu+e€]=BB' + %I

=
Rl
Il
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Joint Distribution and Posterior

» Joint distribution of observed and latent variables

BB' +7%I B
e = (][] 7 )

» Posterior via Gaussian conditioning;:

p(z|x, B,u, %) = N(z|m, C)
m =B (BB +0*I) "' (x — p)
C=I1-B"(BB' +7°I)"'B
» For a new observation x, compute the posterior on p(zs|xs, X)
and examine it (e.g., variance).

» Generate new (plausible) data from this posterior

Principal Component Analysis Marc Deisenroth @AIMS Rwanda, October 4, 2018

47



Maximum Likelihood Estimation
» In PPCA, we can determine the parameters yu, B, 0? via maximum
likelihood estimation. PPCA Likelihood: p(X|u, B, 0?)
» Result (e.g., Tipping & Bishop (1999)):

1 N
PML = Z X, PSample mean
n=1

LS

By = T(A —0?I)2R

D
1
O'I%/IL = DM Z Aj » Average variance in orth. complement

j=M+1

» For ¢ — 0 the maximum likelihood solution gives the same result
as PCA (see mml-book. com)
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mml-book.com

Overview

Related Models

Principal Component Analysis
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Related Models

» Factor analysis:
Axis-aligned noise
(instead of isotropic)

» Independent
component analysis:

Non-Gaussian prior
p(z) =1, pr(zm) » Gaussian process latent variable

model (GP-LVM): Replace linear

» Kernel PCA
ermne mapping in Bayesian PCA with

» Bayesian PCA: Priors

5 Gaussian process. Point estimate of z

on parameters B, u, o . .

N : mat # » Bayesian GP-LVM maintains a

roximate

) bp distribution on z M Approximate

inference nf
inference
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Summary

v
——C

-25 0.0 2.5 5.0 : n=1 N
PR

» PCA: Algorithm for linear dimensionality reduction
» Orthogonal projection of data onto a lower-dimensional subspace

» Maximizes the variance of the projection
» Minimizes the average squared projection/reconstruction error

» High-dimensional data
» Probabilistic PCA
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