

Foundations of Machine Learning African Masters in Machine Intelligence

Imperial College London

Summary Statistics

Marc Deisenroth

Quantum Leap Africa African Institute for Mathematical Sciences, Rwanda

Department of Computing Imperial College London

September 27, 2018

Some Learning Material

- ▶ Book: https://mml-book.com (Chapter 6)
- ► MOOC:

```
\label{lem:machine-learning} $$ \text{(Week 1)}$
```

Summary Statistics Marc Deisenroth @AIMS, Rwanda, September 27, 2018

Probabilities

- Describe a frequency ratio of events
- Express uncertainty when making predictions
- ► Capture a degree of belief about a hypothesis
- ▶ Probabilities are sufficient for reasoning under uncertainty

► Probability density function (continuous *x*)

$$p(x) \geqslant 0$$
, $\int p(x)dx = 1$

► Probability density function (continuous *x*)

$$p(x) \geqslant 0$$
, $\int p(x)dx = 1$

► Probability mass function (discrete *x*)

$$p(x) \geqslant 0$$
, $\sum_{x} p(x) = 1$

► Probability density function (continuous *x*)

$$p(x) \geqslant 0$$
, $\int p(x)dx = 1$

► Probability mass function (discrete *x*)

$$p(x) \geqslant 0$$
, $\sum_{x} p(x) = 1$

► Here: We are imprecise and call $p(\cdot)$ a probability distribution

► Probability density function (continuous *x*)

$$p(x) \geqslant 0$$
, $\int p(x)dx = 1$

► Probability mass function (discrete *x*)

$$p(x) \geqslant 0$$
, $\sum_{x} p(x) = 1$

- ► Here: We are imprecise and call $p(\cdot)$ a probability distribution
- ▶ If x is continuous p(x) is not the probability of event x happening

► Probability density function (continuous *x*)

$$p(x) \geqslant 0$$
, $\int p(x)dx = 1$

► Probability mass function (discrete *x*)

$$p(x) \geqslant 0$$
, $\sum_{x} p(x) = 1$

- ► Here: We are imprecise and call $p(\cdot)$ a probability distribution
- If x is continuous p(x) is not the probability of event x happening
- Cumulative distribution function

$$p(x \leqslant t) = \int_{-\infty}^{t} p(x)dx \in [0,1]$$

► Probability density function (continuous *x*)

$$p(x) \geqslant 0$$
, $\int p(x)dx = 1$

► Probability mass function (discrete *x*)

$$p(x) \geqslant 0$$
, $\sum_{x} p(x) = 1$

- ▶ Here: We are imprecise and call $p(\cdot)$ a probability distribution
- If x is continuous p(x) is not the probability of event x happening
- Cumulative distribution function

$$p(x \leqslant t) = \int_{-\infty}^{t} p(x)dx \in [0,1]$$

▶ Joint distribution p(x, y) of two random variables x, y

► Probability density function (continuous *x*)

$$p(x) \geqslant 0$$
, $\int p(x)dx = 1$

► Probability mass function (discrete *x*)

$$p(x) \geqslant 0$$
, $\sum_{x} p(x) = 1$

- ▶ Here: We are imprecise and call $p(\cdot)$ a probability distribution
- If x is continuous p(x) is not the probability of event x happening
- Cumulative distribution function

$$p(x \leqslant t) = \int_{-\infty}^{t} p(x)dx \in [0,1]$$

- ▶ Joint distribution p(x, y) of two random variables x, y
- Conditional distribution p(x|y) of x given y

Summary Statistics

$$\mathcal{D} = \{-1, 1, 2\}$$

- Summarize datasets or random variables by describing some of their properties
- ► Examples:
 - ► Mean/Expected value (average): 2/3
 - ▶ Variance (related to spread of the data around the mean): 1.56
 - Median (data point "in the middle", i.e., value so that another data point is equally likely to be greater or smaller) ≠ mean: 1

Mean, Mode, Median (Continuous Distributions)

Mean (Expected Value)

- ► "Average"
- Does not have to be part of the dataset or a plausible realization of a random variable (→ dice)

Mean (Expected Value)

- ► "Average"
- Does not have to be part of the dataset or a plausible realization of a random variable (→ dice)

$$\mathbb{E}_{x}[x] = \int x p(x) dx =: \mu_{x} \in \mathbb{R}^{D} \quad \text{if } x \in \mathbb{R}^{D} \text{ is continuous}$$

$$\mathbb{E}_{x}[x] = \frac{1}{N} \sum_{n=1}^{N} x_{n} =: \mu_{x} \in \mathbb{R}^{D} \quad \text{if } x \in \mathbb{R}^{D} \text{ is discrete}$$

$$\mathbb{E}_{x}[x] = \begin{bmatrix} \mathbb{E}_{x_{1}}[x_{1}] \\ \vdots \\ \mathbb{E}_{x_{D}}[x_{D}] \end{bmatrix} \in \mathbb{R}^{D}$$

Empirical Mean

- Random variable $x \in \mathbb{R}^D$
- ▶ *N* concrete realizations $x_1, ..., x_N, x_n \in \mathbb{R}^D$
- ► Empirical mean (estimate of the true mean:

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \in \mathbb{R}^D$$

▶ Both datasets have the same (empirical) mean

- ▶ Both datasets have the same (empirical) mean
- Need a different quantity to describe "spread" of the data around the mean ➤ Variance
- ► Variance: Expected (squared) distance of data from the mean

- ▶ Both datasets have the same (empirical) mean
- ► Need a different quantity to describe "spread" of the data around the mean ➤ Variance
- ► Variance: Expected (squared) distance of data from the mean

$$\mathbb{V}[x] := \mathbb{E}_x[(x - \mu_x)(x - \mu_x)^{\top}]$$

- ► Both datasets have the same (empirical) mean
- Need a different quantity to describe "spread" of the data around the mean ➤ Variance
- ► Variance: Expected (squared) distance of data from the mean

$$\begin{split} \mathbb{V}[x] &:= \mathbb{E}_x [(x - \mu_x)(x - \mu_x)^\top] \\ \mathbb{V}[x] &:= \int (x - \mu_x)(x - \mu_x)^\top p(x) dx \in \mathbb{R}^{D \times D} & \text{if } x \in \mathbb{R}^D \text{ is continuous} \\ \mathbb{V}[x] &:= \frac{1}{N} \sum_{n=1}^N (x_n - \mu_x)(x_n - \mu_x)^\top \in \mathbb{R}^{D \times D} & \text{if } x \in \mathbb{R}^D \text{ is discrete} \end{split}$$

Empirical Variance

- Random variable $x \in \mathbb{R}^D$
- ▶ *N* concrete realizations $x_1, ..., x_N, x_n \in \mathbb{R}^D$
- Empirical variance (estimate of the true variance):

$$\frac{1}{N}\sum_{n=1}^{N}(\boldsymbol{x}_{n}-\boldsymbol{\mu})(\boldsymbol{x}_{n}-\boldsymbol{\mu})^{\top}\in\mathbb{R}^{D\times D}$$

Empirical Variance

$$\mathcal{D}_1 = \{1, 2, 4, 5\}, \qquad \mathcal{D}_2 = \{-1, 3, 7\}$$

Compute the empirical variances for both datasets

Empirical Variance

$$\mathcal{D}_1 = \{1, 2, 4, 5\}, \qquad \mathcal{D}_2 = \{-1, 3, 7\}$$

Compute the empirical variances for both datasets

- ▶ $V[D_1] = 2.5$
- ▶ $V[\mathcal{D}_2] = 10.66$ **▶** \mathcal{D}_2 is more spread (around the mean) than \mathcal{D}_1
- ▶ Standard deviation $\sqrt{V[\cdot]}$ describes the spread more naturally and possesses the same units as the mean

Summary Statistics Marc Deisenroth @AIMS, Rwanda, September 27, 2018 11

- Variances along each axis remain constant, but properties of the dataset change
- Variances insufficient to characterize the relationship/correlation of two random variables

- Variances along each axis remain constant, but properties of the dataset change
- Variances insufficient to characterize the relationship/correlation of two random variables

12

- Variances along each axis remain constant, but properties of the dataset change
- Variances insufficient to characterize the relationship/correlation of two random variables

- Variances along each axis remain constant, but properties of the dataset change
- Variances insufficient to characterize the relationship/correlation of two random variables

- Variances along each axis remain constant, but properties of the dataset change
- Variances insufficient to characterize the relationship/correlation of two random variables

12

Cross-Covariance (2)

$$\mathbf{x} \in \mathbb{R}^D$$
, $\mathbf{y} \in \mathbb{R}^E$. Then

$$\operatorname{Cov}[x,y] := \mathbb{E}_{x,y}[(x-\mu_x)(y-\mu_y)^{\top}]$$

Cross-Covariance (2)

 $x \in \mathbb{R}^D$, $y \in \mathbb{R}^E$. Then

► Cross-covariance:

$$Cov[x, y] := \mathbb{E}_{x,y}[(x - \mu_x)(y - \mu_y)^{\top}]$$

$$Cov[x, y] := \iint (x - \mu_x)(y - \mu_y)^{\top} p(x)p(y) dx dy \in \mathbb{R}^{D \times E}$$
if x, y are continuous

$$Cov[x, y] := \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_x) (y_n - \mu_y)^{\top} \in \mathbb{R}^{D \times E}$$

if x, y are discrete

13

Cross-Covariance (2)

 $x \in \mathbb{R}^D$, $y \in \mathbb{R}^E$. Then

Cross-covariance:

$$Cov[x, y] := \mathbb{E}_{x,y}[(x - \mu_x)(y - \mu_y)^{\top}]$$

$$Cov[x, y] := \iint (x - \mu_x)(y - \mu_y)^{\top} p(x)p(y)dxdy \in \mathbb{R}^{D \times E}$$
if x, y are continuous

$$Cov[x, y] := \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_x) (y_n - \mu_y)^{\top} \in \mathbb{R}^{D \times E}$$

if x, y are discrete

•
$$\mathbb{V}[x] = \operatorname{Cov}[x, x] \in \mathbb{R}^{D \times D}$$

 $\quad \mathsf{Cov}[x,y] = \mathsf{Cov}[y,x]^{\top} \in \mathbb{R}^{D \times E}$

Covariance Matrix

▶ Random variable

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} \in \mathbb{R}^D$$

 Variance of this *D*-dimensional random variable is given by a covariance matrix

$$\mathbb{V}_{\boldsymbol{x}}[\boldsymbol{x}] = \begin{bmatrix} \mathbb{V}[x_1] & \operatorname{Cov}[x_1, x_2] & \cdots & \operatorname{Cov}[x_1, x_D] \\ \operatorname{Cov}[x_2, x_1] & \mathbb{V}[x_2] & \cdots & \operatorname{Cov}[x_2, x_D] \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}[x_D, x_1] & \cdots & \mathbb{V}[x_D] \end{bmatrix} \in \mathbb{R}^{D \times D}$$

► Covariance matrix is symmetric, positive (semi-)definite

Mean and (Co)Variance

Mean and (co)variance are often useful to describe properties of data distributions (expected values and spread).

Summary

$$\mathbb{E}_{x}[x] = \int x p(x) dx =: \mu \qquad \left(\frac{1}{N} \sum_{n=1}^{N} x_{n}\right)$$

$$\mathbb{V}_{x}[x] = \mathbb{E}_{x}[(x - \mu)(x - \mu)^{\top}] = \mathbb{E}_{x}[xx^{\top}] - \mu \mu^{\top} =: \Sigma$$

$$\operatorname{Cov}[x, y] = \mathbb{E}_{x, y}[xy^{\top}] - \mathbb{E}_{x}[x]\mathbb{E}_{y}[y]^{\top}$$

Mean and (Co)Variance

Mean and (co)variance are often useful to describe properties of data distributions (expected values and spread).

Summary

$$\mathbb{E}_{x}[x] = \int x p(x) dx =: \mu \qquad \left(\frac{1}{N} \sum_{n=1}^{N} x_{n}\right)$$

$$\mathbb{V}_{x}[x] = \mathbb{E}_{x}[(x - \mu)(x - \mu)^{\top}] = \mathbb{E}_{x}[xx^{\top}] - \mu \mu^{\top} =: \Sigma$$

$$\operatorname{Cov}[x, y] = \mathbb{E}_{x, y}[xy^{\top}] - \mathbb{E}_{x}[x]\mathbb{E}_{y}[y]^{\top}$$

Compute the mean and (co)variance of the following datasets

$$\mathcal{D}_1 := \left\{-2, -1, 2\right\} \qquad \mathcal{D}_2 := \left\{\begin{bmatrix}1\\2\end{bmatrix}, \begin{bmatrix}5\\4\end{bmatrix}\right\}$$

Translation: Effect on the Mean

What happens to the mean of a dataset if we shift/translate it by 2?

Translation: Effect on the Mean

What happens to the mean of a dataset if we shift/translate it by 2?

Translation: Effect on the Mean

What happens to the mean of a dataset if we shift/translate it by 2?

16

Scaling: Effect on the Mean

▶ What happens to the mean of a dataset if we scale it by 2?

Scaling: Effect on the Mean

▶ What happens to the mean of a dataset if we scale it by 2?

Scaling: Effect on the Mean

▶ What happens to the mean of a dataset if we scale it by 2?

Translation: Effect on the Variance

▶ What happens to the variance of a dataset if we shift it by 2?

Translation: Effect on the Variance

▶ What happens to the variance of a dataset if we shift it by 2?

Translation: Effect on the Variance

▶ What happens to the variance of a dataset if we shift it by 2?

Scaling: Effect on the Variance

▶ What happens to the variance of a dataset if we scale it by 2?

Scaling: Effect on the Variance

▶ What happens to the variance of a dataset if we scale it by 2?

Scaling: Effect on the Variance

▶ What happens to the variance of a dataset if we scale it by 2?

$$y = Ax + b,$$
 where $\mathbb{E}_x[x] = \mu$, $\mathbb{V}_x[x] = \Sigma$ $\mathbb{E}[y] = V[y] =$

$$y=Ax+b,$$
 where $\mathbb{E}_x[x]=\mu,\,\mathbb{V}_x[x]=\Sigma$ $\mathbb{E}[y]=\mathbb{E}_x[Ax+b]=A\mathbb{E}_x[x]+b=A\mu+b$ $\mathbb{V}[y]=$

$$y=Ax+b,$$
 where $\mathbb{E}_x[x]=\mu,\,\mathbb{V}_x[x]=\Sigma$ $\mathbb{E}[y]=\mathbb{E}_x[Ax+b]=A\mathbb{E}_x[x]+b=A\mu+b$ $\mathbb{V}[y]=$

$$egin{aligned} y &= Ax + b, & ext{where} \quad \mathbb{E}_x[x] &= \mu, \ \mathbb{V}_x[x] &= \Sigma \ \mathbb{E}[y] &= \mathbb{E}_x[Ax + b] &= A\mathbb{E}_x[x] + b &= A\mu + b \ \mathbb{V}[y] &= \mathbb{V}_x[Ax + b] &= \mathbb{V}_x[Ax] &= A\mathbb{V}_x[x]A^\top &= A\Sigma A^\top \end{aligned}$$

Sum of Random Variables

 $x, y \in \mathbb{R}^D$ random variables. Then

$$\mathbb{E}[x \pm y] = \mathbb{E}_x[x] \pm \mathbb{E}_y[y]$$

$$\mathbb{V}[x \pm y] = \mathbb{V}[x] + \mathbb{V}[y] \pm \text{Cov}[x, y] \pm \text{Cov}[y, x]$$