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Some Learning Material

» Book: https://mml-book.com (Chapter 6)
» MOOC:

https://www.coursera.org/learn/pca-machine-learning

(Week 1)
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Probabilities
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Unlikely Even Chance
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» Describe a frequency ratio of events

A 1

d9
J99

4-in-5 Chance

» Express uncertainty when making predictions

» Capture a degree of belief about a hypothesis

» Probabilities are sufficient for reasoning under uncertainty

Summary Statistics Marc Deisenroth

@AIMS, Rwanda, September 27, 2018



Probability Distributions

» Probability density function (continuous x)

p(x) =0, jp(x)dx =1
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Probability Distributions

» Probability density function (continuous x)

P =0, [ pwdx -1
» Probability mass function (discrete x)

p(x) =0, > opx) =1
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Probability Distributions

» Probability density function (continuous x)
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Probability Distributions

» Probability density function (continuous x)

P =0, [ pwdx -1
» Probability mass function (discrete x)

p(x) =0, > opx) =1

» Here: We are imprecise and call p(-) a probability distribution
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Probability Distributions

» Probability density function (continuous x)

P =0, [ pwdx -1
Probability mass function (discrete x)

p(x) =0, > opx) =1

v

» Here: We are imprecise and call p(-) a probability distribution

v

If x is continuous p(x) is not the probability of event x happening

v

Cumulative distribution function

plx <t) = J_OO p(x)dx € [0,1]
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Probability Distributions

» Probability density function (continuous x)

P =0, [ pwdx -1
Probability mass function (discrete x)

p(x) =0, > opx) =1

v

» Here: We are imprecise and call p(-) a probability distribution

v

If x is continuous p(x) is not the probability of event x happening

v

Cumulative distribution function
t
plx <t) = J p(x)dx € [0,1]
—00

» Joint distribution p(x, y) of two random variables x, y
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Probability Distributions

» Probability density function (continuous x)

P =0, [ pwdx -1
Probability mass function (discrete x)

p(x) =0, > opx) =1

v

» Here: We are imprecise and call p(-) a probability distribution

v

If x is continuous p(x) is not the probability of event x happening

v

Cumulative distribution function
t
plx <t) = J p(x)dx € [0,1]
—00

» Joint distribution p(x, y) of two random variables x, y
» Conditional distribution p(x|y) of x given y
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Summary Statistics

D={-1,1,2}

» Summarize datasets or random variables by describing some of
their properties
» Examples:

» Mean/Expected value (average): 2/3

*» Variance (related to spread of the data around the mean): 1.56

» Median (data point “in the middle”, i.e., value so that another data
point is equally likely to be greater or smaller) # mean: 1
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Mean, Mode, Median (Continuous Distributions)

®  Mean
*  Mode
® Median

N
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Mean (Expected Value)

» “Average”

*» Does not have to be part of the dataset or a plausible realization
of a random variable (P dice)
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Mean (Expected Value)

» “Average”

*» Does not have to be part of the dataset or a plausible realization
of a random variable (P dice)

N
1
Ey[x] = N Z xy =:p, € RP if x € RP is discrete
n=1
X1 [xl]
Ey[x] = : e RP
Exp [xD]
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Empirical Mean

— — - =

—25 0.0 2.5 5.0 7.5 10.0

» Random variable x € RP
» N concrete realizations x1,...,xN, X, € RP

» Empirical mean (estimate of the true mean:
1 N
D
N Z x, €R
n=1
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Variance

= B = = = B |
—25 0.0 2.5 5.0 75 10.0 12.5

» Both datasets have the same (empirical) mean
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Variance

——0 0100 |
—25 0.0 2.5 5.0 75 10.0 12.5

» Both datasets have the same (empirical) mean

*» Need a different quantity to describe “spread” of the data around
the mean M Variance

» Variance: Expected (squared) distance of data from the mean
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Variance

——0 0100 |
—25 0.0 2.5 5.0 75 10.0 12.5

» Both datasets have the same (empirical) mean

*» Need a different quantity to describe “spread” of the data around
the mean M Variance

» Variance: Expected (squared) distance of data from the mean

V[x] = Ex[(x - ”x)(x - :ux)T]
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Variance

-1 O o N ee |
—25 0.0 2.5 5.0 75 10.0 12.5

» Both datasets have the same (empirical) mean

*» Need a different quantity to describe “spread” of the data around
the mean M Variance

» Variance: Expected (squared) distance of data from the mean

V[x] = Ex[(x - ”x)(x - :ux)T]
Vix] := f(x —p)(x—p,) "p(x)dx e RP*P if x € RP is continuous

- N Zn 1 — ) e RPXP if x € RP is discrete
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Empirical Variance

» Random variable x € RP
» N concrete realizations x1, . .., xn, X, € RP
» Empirical variance (estimate of the true variance):
N
1

N (xn — p) (xn — 1)

n=1

T c RDXD
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Empirical Variance

——001H-0-0—1

—25 0.0 2.5 5.0 7.5 10.0

Dy ={1,2,4,5}, D, ={-1,37}

Compute the empirical variances for both datasets
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Empirical Variance

B o eomee |
—25 0.0 2.5 5.0 7.5 10.0 12.5

Dy ={1,2,4,5}, D, ={-1,37}

Compute the empirical variances for both datasets
» V[D;] =25
» V[D,] = 10.66 » D, is more spread (around the mean) than D,
» Standard deviation 1/V[] describes the spread more naturally

and possesses the same units as the mean
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Covariance and Cross-Covariance

» Variances along each axis remain constant, but properties of the
dataset change

» Variances insufficient to characterize the relationship /correlation
of two random variables

» Cross-covariance
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Cross-Covariance (2)

x € RP,y e RE. Then

» Cross-covariance:

Covlx, y] := Buy[(x — ) (y — p,) "]

Summary Statistics Marc Deisenroth

@AIMS, Rwanda, September 27, 2018
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Cross-Covariance (2)

x € RP,y e RE. Then

» Cross-covariance:
Covlx, y] i= Exyl(x— )y — )7
Covl,y) = [[ (e my — ) po)ply)ixdy  BO*E
if x, y are continuous

Cov[x,y] : =N Z yy) e RP*E

if x, y are discrete

Summary Statistics Marc Deisenroth @AIMS, Rwanda, September 27, 2018

13



Cross-Covariance (2)

x € RP,y e RE. Then

» Cross-covariance:
Covlx, y] i= Exyl(x— )y — )7
Covl,y) = [[ (e my — ) po)ply)ixdy  BO*E
if x, y are continuous

Cov[x,y] : =N Z yy) e RP*E

if x, y are discrete

» V[x] = Cov[x, x] € RP*P
» Cov[x,y] = Cov[y,x]" € RP*E
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Covariance Matrix

» Random variable
X1

x=|:|eRP
XD
» Variance of this D-dimensional random variable is given by a

covariance matrix

V[x1] Cov[xy, xp] -+ Cov|xy, xp]
Cov|xs, x V(x < Covl|xy, x
Vo] = [.z 1] [x2] | [.2 D]  RDD
Cov|xp, x1] e V([xp]

» Covariance matrix is symmetric, positive (semi-)definite
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Mean and (Co)Variance

Mean and (co)variance are often useful to describe properties of data
distributions (expected values and spread).

Summary

Ex[x] = pr(x)dx = (Zif 2 xn>

Vailx] = Bx[(x —p)(x =) '] = Exfxx "] —pp” = I
Cov[x,y] = Ex,y [xyT] — Ey [x]Ey [!/]T
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Mean and (Co)Variance

Mean and (co)variance are often useful to describe properties of data
distributions (expected values and spread).

Summary

Ex[x] = pr(x)dx = (Zif 2 xn>

Vailx] = Bx[(x —p)(x =) '] = Exfxx "] —pp” = I
Cov[x,y] = Ex,y [xyT] — Ey [x]Ey [!/]T

Compute the mean and (co)variance of the following datasets

p=2a o (] [
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Translation: Effect on the Mean

— — - -

—25 0.0 2.5 5.0 75 10.0 12.5

» What happens to the mean of a dataset if we shift/translate it by
2?
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Translation: Effect on the Mean

— — - = - =

—25 0.0 2.5 5.0 75 10.0 12.5

» What happens to the mean of a dataset if we shift/translate it by
2?
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Scaling: Effect on the Mean

— — - -

—25 0.0 2.5 5.0 75 10.0

» What happens to the mean of a dataset if we scale it by 2?
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Scaling: Effect on the Mean

o0 koeoe o

—25 0.0 2.5 5.0 75 10.0 12.5

» What happens to the mean of a dataset if we scale it by 2?
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Scaling: Effect on the Mean

o0 ——k0J0 0o

—25 0.0 2.5 5.0 75 10.0 12.5

» What happens to the mean of a dataset if we scale it by 2?
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Translation: Effect on the Variance

® ee

—25 0.0 2.5 5.0 75 10.0

» What happens to the variance of a dataset if we shift it by 27
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Translation: Effect on the Variance

—0—00000

—25 0.0 2.5 5.0 75 10.0 12.5

» What happens to the variance of a dataset if we shift it by 27
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Translation: Effect on the Variance
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» What happens to the variance of a dataset if we shift it by 27
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Scaling: Effect on the Variance

® ee

—25 0.0 2.5 5.0 75 10.0 12.5

» What happens to the variance of a dataset if we scale it by 2?
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Scaling: Effect on the Variance
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» What happens to the variance of a dataset if we scale it by 2?
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Scaling: Effect on the Variance

0o —0 00 —©
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» What happens to the variance of a dataset if we scale it by 2?
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Linear/Affine Transformations

y=Ax+b, where Ey[x] =pu, Vi[x] =X
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Linear/ Affine Transformations

y=Ax+b, where Ey[x] =pu, Vi[x] =X
Ely] = Ex[Ax 4+ b] = AE,[x] +b =Au+b

Vly| =
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Linear/ Affine Transformations

y
Ely]
Vly]

Summary Statistics

Ax + Db,
Ey[Ax + b] =

Vi[Ax +b] =

where Ey[x] =pu, Vi[x] =X
Ex[x]+b=Ap+b
x[Ax] = AV,[x]AT = AXAT
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Sum of Random Variables

X, Y€ RP random variables. Then

Elx £ y] = Ex[x] + Ey[y]
y

*
V[x + y] = V[x] + V[y] + Cov[x, y] + Cov|[y, x]
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