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Overview

Bayesian Linear Regression (1-Slide Refresher)
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Bayesian Linear Regression: Model

Prior p(0) = N (my, So)
Likelihood p(y|x,0) = N (y| ¢ (x)6, %)
mq So — y=¢ (x)0+¢e, e~N(0, 7

a » Parameter 0 becomes a latent (random) variable
» Distribution p(0) induces a distribution over
x 0 plausible functions

» Choose a conjugate Gaussian prior

*» Closed-form computations
> Gaussian posterior
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Overview

Priors over Functions
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Distribution over Functions

Consider a linear regression setting
y=a+bx+e, €~N(0 07)
p(a,b) = N'(0, I)
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Sampling from the Prior over Functions

Consider a linear regression setting

Gaussian Processes

y=f(x)+e=a+bx+e, €~N(0 07)
p(a,b) = N'(0, I
fi(x) = ai + bix, [a;, bi] ~ p(a,b)
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Sampling from the Posterior over Functions

Consider a linear regression setting

y=f(x)+e=a+bx+e, €~N(O,J,3)
p(a,b) = N'(0, I)
X =[x1,...,xn], y=[v1,...,yn] Training data
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Sampling from the Posterior over Functions

Consider a linear regression setting

y=f(x)+e=a+bx+e, e~N(0, (75)
p(a,b) = N(0, I
p(a,b|X,y) = N (mn, Sn) Posterior

4
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Sampling from the Posterior over Functions

Consider a linear regression setting
y=f(x)+e=a+bx+e, e~N(0, 07
[ai, bi] ~ p(a, b|X, y)

fi =a; +bix
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Fitting Nonlinear Functions

» Fit nonlinear functions using (Bayesian) linear regression:
Linear combination of nonlinear features
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Fitting Nonlinear Functions

» Fit nonlinear functions using (Bayesian) linear regression:
Linear combination of nonlinear features

» Example: Radial-basis-function (RBF) network

fx) = 0i(x), 6;~N(0,07)
i=1
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Fitting Nonlinear Functions

» Fit nonlinear functions using (Bayesian) linear regression:
Linear combination of nonlinear features

» Example: Radial-basis-function (RBF) network

fx) = Zei(l’i(x)r 6; ~ N(0, ;)
i=1
where

$i(x) = exp ( - %(x —P’i)T(x —P’i))

s 1" 4
for given “centers” u;
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[lustration: Fitting a Radial Basis Function Network

pi(x) = exp (= 3(x —p) " (x — p1;))

2
2 w@é%?
Y /
-2
-5 0 5
X

» Place Gaussian-shaped basis functions ¢; at 25 input locations y;,

linearly spaced in the interval [—5, 3]
11
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Samples from the RBF Prior
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Samples from the RBF Posterior

29471 (61X, y) = N (my, SN)

-5 0 5
X

Gaussian Processes
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RBF Posterior

Gaussian Processes
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@Imperial College London, January 22, 2019

14



Limitations

-5 0 5
X
» Feature engineering (what basis functions to use?)

» Finite number of features:

» Above: Without basis functions on the right, we cannot express
any variability of the function
> Ideally: Add more (infinitely many) basis functions
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Approach

» Instead of sampling parameters, which induce a distribution over
functions, sample functions directly
» Place a prior on functions
» Make assumptions on the distribution of functions
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Approach

» Instead of sampling parameters, which induce a distribution over
functions, sample functions directly
» Place a prior on functions
» Make assumptions on the distribution of functions

» Intuition: function = infinitely long vector of function values
» Make assumptions on the distribution of function values
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Approach

» Instead of sampling parameters, which induce a distribution over
functions, sample functions directly
» Place a prior on functions
» Make assumptions on the distribution of functions

» Intuition: function = infinitely long vector of function values
» Make assumptions on the distribution of function values

» Gaussian process
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Overview

Gaussian Processes
Definition and Derivation
Inference
Covariance Functions and Hyper-Parameters
Training
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Reference

Carl Edward Rasmussen and Christopher K. I. Williams

http://www.gaussianprocess.org/

Gaussian Processes
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Problem Setting

f(x)
SHES T

—_
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Objective

For a set of observations y; = f(x;) +¢, ¢ ~N (0, ‘752)/ find a
distribution over functions p(f) that explains the data

» Probabilistic regression problem
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Problem Setting

5-432-10123456789I
X

For a set of observations y; = f(x;) +¢, &~ N (0, 0?), find a
distribution over functions p(f) that explains the data
» Probabilistic regression problem
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Some Application Areas

» Reinforcement learning and robotics

» Bayesian optimization (experimental design)

v

Geostatistics

v

Sensor networks

» Time-series modeling and forecasting

v

High-energy physics

v

Medical applications
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Gaussian Process

» We will place a distribution p(f) on functions f

» Informally, a function can be considered an infinitely long vector
of function values f = [f1, f2, f3,...]

» A Gaussian process is a generalization of a multivariate Gaussian
distribution to infinitely many variables.
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Gaussian Process

» We will place a distribution p(f) on functions f

» Informally, a function can be considered an infinitely long vector
of function values f = [f1, f2, f3,...]

» A Gaussian process is a generalization of a multivariate Gaussian
distribution to infinitely many variables.

Definition (Rasmussen & Williams, 2006)

A Gaussian process (GP) is a collection of random variables fi, f>,.. .,
any finite number of which is Gaussian distributed.
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Gaussian Process

» We will place a distribution p(f) on functions f

» Informally, a function can be considered an infinitely long vector
of function values f = [f1, f2, f3,...]

» A Gaussian process is a generalization of a multivariate Gaussian
distribution to infinitely many variables.

Definition (Rasmussen & Williams, 2006)

A Gaussian process (GP) is a collection of random variables fi, f>,.. .,
any finite number of which is Gaussian distributed.

» A Gaussian distribution is specified by a mean vector # and a
covariance matrix X

» A Gaussian process is specified by a mean function m(-) and a
covariance function (kernel) k(-, -)
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Mean Function

0

5 4321012345678
X

» The “average” function of the distribution over functions

» Allows us to bias the model (can make sense in
application-specific settings)

» “Agnostic” mean function in the absence of data or prior
knowledge: m(-) = 0 everywhere (for symmetry reasons)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Covariance Function
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» The covariance function (kernel) is symmetric and positive

semi-definite
» It allows us to compute covariances/correlations between

(unknown) function values by just looking at the corresponding
inputs:

Cov[f(xi), f(x))] = k(xi, x))
» Kernel trick (Scholkopf & Smola, 2002)
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GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)
p(y|X)

p(fIX,y) =
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pylf, X) p(f)
p(y|X)

p(fIX,y) =

Prior: p(f) = GP(m, k) » Specify mean m function and kernel k.
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GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)
p(y|X)

p(fIX,y) =

Prior: p(f) = GP(m, k) » Specify mean m function and kernel k.
Likelihood (noise model): p(y|f, X) = N (f(X), 02I)
Marginal likelihood (evidence): p(y|X) = § p(y|f, X)p(f|X)df
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GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)

X, _
piXy) =

Prior: p(f) = GP(m, k) » Specify mean m function and kernel k.
Likelihood (noise model): p(y|f, X) = N (f(X), 02I)

Marginal hkehhood (evidence): p(y|X) = S p(y|f, X)p(fIX)df
Posterior: p(f|y, X) = GP(mpost, kpost)
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GP Prior

» Treat a function as a long vector of function values:

f=1ffa...]

» Look at a distribution over function values f; = f(x;)
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GP Prior

» Treat a function as a long vector of function values:

f=1ffa...]

» Look at a distribution over function values f; = f(x;)
> Consider a finite number of N function values f and all other
(infinitely many) function values f. Informally:

- re| [ foD
4 :N 7
Hrg) ([”f] [fo Ly

whére LipeR™™and L re RN*" m — oo,
> ) — Cov[f(xi), f(x))] = k(xi,x})

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

26



GP Prior

» Treat a function as a long vector of function values:

f=1ffa...]

» Look at a distribution over function values f; = f(x;)
> Consider a finite number of N function values f and all other
(infinitely many) function values f. Informally:

- re| [ foD
4 :N 7
Hrg) ([”f] [fo Ly

where Lrpe R™M™ and Lre RN*™ 1 — op.

. zf;}f) = Cov[f(xi), f(x})] = k(x;,x))
» Key property: The marginal remains finite

p(f) = Jp(f,f)df =N (s, Zgr)
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GP Prior (2)

» In practice, we always have finite training and test inputs

Xtrain, Xtest-

» Define f, = fi.ov f = firain-

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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GP Prior (2)

» In practice, we always have finite training and test inputs

Xtrain, Xtest-

> Define f* = ftest’f = ftrain'
» Then, we obtain the finite marginal

¥ X,
p(f/f*) = Jp(flf*’fother)dfother :N<[z£]’ [Zi; Ei*])

» Computing the joint distribution of an arbitrary number of
training and test inputs boils down to manipulating
(finite-dimensional) Gaussian distributions

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 27



GP Posterior Predictions

y=f(x)+e, 6~N(O,Uﬁ)

» Objective: Find p(f(X)|X,y, X.) for training data X, y and test
inputs X.

» GP prior at training inputs: p(f|X) = N (m(X), K)

> Gaussian Likelihood: p(y|f, X) = N (f(X), 03I)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 28



GP Posterior Predictions

y=f(x)+e, €e~N(0, 03)
Objective: Find p(f(X«)|X,y, X,) for training data X, y and test
inputs X.
GP prior at training inputs: p(f|X) = N (m(X), K)
Gaussian Likelihood: p(y|f, X) = N (f(X), o21)
With f ~ GP it follows that f, f, are jointly Gaussian distributed:

pUf X, Xa) = N ([,,fo}?)]f [uxlf, X) kk((;((};())D

v

v

v

v
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GP Posterior Predictions

y=f(x)+e, 6~N(O,Uﬁ)

Objective: Find p(f(X«)|X,y, X,) for training data X, y and test
inputs X.

GP prior at training inputs: p(f|X) = N (m(X), K)

Gaussian Likelihood: p(y|f, X) = N (f(X), o21)

With f ~ GP it follows that f, f, are jointly Gaussian distributed:

B m(X) K k(X, X
Due to the Gaussian likelihood, we also get (f is unobserved)
B m(X)| | K+o2l  k(X,X.)
Py, f X, X.) = N ([m(x*)] ’ [k(X*,X) k(X*,X*)D

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 28
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GP Posterior Predictions

Prior:

Py, flX, Xs) = N <[TZ1((;}<?)}' [15;(7;(1) kk((?}(”;))D

Posterior predictive distribution p(f,|X,y, X) at test inputs X,

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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GP Posterior Predictions

Prior:
Py, flX, Xs) = N ([21((;}2)}' [15;(7;(1) kk((?}(”)(())])

Posterior predictive distribution p(f,|X,y, X) at test inputs X,
obtained by Gaussian conditioning;:

p(flX,y, X)) = N (E[f| X, y, Xu], V[fs| X, y, X4])
E[f«|X, y, X«] = mpost(Xs«) = m(X*)"‘]f(X*/X)(K + (77211)71 (y— m(X)Z

prior mean “Kalman gain” error
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GP Posterior Predictions

Prior:

Py, flX, Xs) = N ([21((;}2)}' [15;(7;(1) kk((?}(”)(())])

Posterior predictive distribution p(f,|X,y, X) at test inputs X,
obtained by Gaussian conditioning;:

E[f«|X, y, Xu] = mpost(X«) = m(Xs)+k(Xs, X) (K + (77211)71 (y —m(X))
W - ~- ~- J
prior mean “Kalman gain” error
VU*‘X/]//X*] = kpost(X*/X*)
= k(X4 Xs)— (X4, X)(K + 02I)'k(X, X )
—_——

<

~
prior variance =0
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GP Posterior
Posterior over functions (with training data X, y):

plylf(), X) p(f()IX)

POX,Y) - p(mx)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

30



GP Posterior
Posterior over functions (with training data X, y):

plylf(), X) p(f()IX)
(yIX )
Using the properties of Gaussians, we obtain (with K := k(X, X))

pIf().X) p(fF()IX) = N(y|f(X), i) GP(m(:), k("))

p(fO)IXy) =
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GP Posterior
Posterior over functions (with training data X, y):

plylf(), X) p(f()IX)
(yIX )
Using the properties of Gaussians, we obtain (with K := k(X, X))

pIf().X) p(fF()IX) = N(y|f(X), i) GP(m(:), k("))
= Z x GP(mpost(+), kpost (-, -))

mpost(') = () +k('/ )(K+0-7211)_1(y_m(X))

kpost(-,+) = k() —k(-, X) (K + o31) k(X )

p(fO)IXy) =
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GP Posterior
Posterior over functions (with training data X, y):

plylf(). X) p(f()IX)
p(yIX)
Using the properties of Gaussians, we obtain (with K := k(X, X))

plf().X) p(fO)IX) = N(y|f(X), ozT) GP(m(-), k("))
= Z x GP(mpost(+), kpost (-, -))
Mpost(-) = m(-) + k(-, X)(K + o3 1) " (y — m(X))
kpost(-) = k(- ) = k(-, X)(K + o5 ) k(X -)
Marginal likelihood:

Z= puIX) = | PIEX) pUFX) df = N (y| m(X), K +031)

r(fOIXy) =
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GP Posterior
Posterior over functions (with training data X, y):

plylf(). X) p(f()IX)
p(yIX)
Using the properties of Gaussians, we obtain (with K := k(X, X))

plf().X) p(fO)IX) = N(y|f(X), ozT) GP(m(-), k("))
= Z x GP(mpost(+), kpost (-, -))
Mpost(-) = m(-) + k(-, X)(K + o3 1) " (y — m(X))
kpost(-) = k(- ) = k(-, X)(K + o5 ) k(X -)
Marginal likelihood:

Z= puIX) = | PIEX) pUFX) df = N (y| m(X), K +031)

Prediction at x..: p(f(x«)| X, y, %) = N(mpost(x*), kpost(x*,x*))

r(fOIXy) =
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[Mustration: Inference with Gaussian Processes
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X
Prior belief about the function

Predictive (marginal) mean and variance:

E[f (x:)|x:, @] =m(xy) =0
V[f(xe)|xe, @] = 02 (%) = Kk(xs, %)
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IMlustration: Inference with Gaussian Processes
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Prior belief about the function

Predictive (marginal) mean and variance:
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[Mustration: Inference with Gaussian Processes
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Posterior belief about the function

Predictive (marginal) mean and variance:
E[f ()]s, X, y] = m(xs) = k(X, %) T (K + 03 1) "1y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
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[Mustration: Inference with Gaussian Processes
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[Mustration: Inference with Gaussian Processes
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Predictive (marginal) mean and variance:

BLf(x) e X, 9] = m(x,) = KX, %) (K + 21) 1y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
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[Mustration: Inference with Gaussian Processes
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[Mustration: Inference with Gaussian Processes
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Illustration: Inference with Gaussian Processes

o= n o

f(x)

-1t
ot

5 4321012345678
X

Posterior belief about the function

Predictive (marginal) mean and variance:

BLf (v2) e, X, 9] = m(x.) = (X, %) T (K + 021) "y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
@Imperial College London, January 22, 2019 31

Gaussian Processes Marc Deisenroth



Illustration: Inference with Gaussian Processes

5 4324 0123 4506 7 8
X
Posterior belief about the function

Predictive (marginal) mean and variance:

E[f (x:)|xs, X, y] = m(xs) = k(X, %) (K + 031) 'y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 31



Covariance Function

» A Gaussian process is fully specified by a mean function m and a
kernel/covariance function k

» The covariance function (kernel) is symmetric and positive
semi-definite

» Covariance function encodes high-level structural assumptions
about the latent function f (e.g., smoothness, differentiability,
periodicity)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 33



Gaussian Covariance Function

kGauss(xi/ x]) = 0-]% exp ( - (xi - xj)T(xi - x])/gZ)
> 0y: Amplitude of the latent function

's 0 5
X
» Assumption on latent function: Smooth (oo differentiable)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Gaussian Covariance Function

kGauss(xi/ x]) = 0-]% exp ( - (xi - xj)T(xi - x])/gZ)
> 0y: Amplitude of the latent function
» (: Length-scale. How far do we have to move in input space
before the function value changes significantly, i.e., when do
function values become uncorrelated?
» Smoothness parameter

's 0 5
X
» Assumption on latent function: Smooth (oo differentiable)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 4.0

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 2.0

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 1.0

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 0.5

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Length-Scale ¢

kGauss (xi, ) = o7 exp (— (xi —x;) T (xi —x7)/ %)

1.0
—— 0.05

0.1
— 0.2
— 0.5
— 5.0

0.8

Correlation
° °
S o

°
N

00 0.0 0.2 0.4 0.6 0.8 1.0

Il

» How “wiggly” is the function?

» How much information we can transfer to other function values?

» How far do we have to move in input space from x to x’ to make
f(x) and f(x’) uncorrelated?

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 36



Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.05

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37
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Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.1

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37
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Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.2

2.0

15

1.0

0.5

0.0

f(x)

-0.5

-1.0

-1.5

-2.0

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37
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Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.5

15

1.0

0.5

0.0

f(x)

-0.5

-1.0

-1.5

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37
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Matérn Covariance Function

\/§sz'*xj'll) _ \/§sz'fx1|\)
l l

knatz2(xi, X)) = 0F (1 + exp (
> 0y: Amplitude of the latent function
» (: Length-scale. How far do we have to move in input space

before the function value changes significantly?

f(x)

0
X

» Assumption on latent function: 1-times differentiable

Marc Deisenroth @Imperial College London, January 22, 2019 38
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Periodic Covariance Function




Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function

» kik, is a valid covariance function

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function
» kik, is a valid covariance function

» k(u(x),u(x")) is a valid covariance function (MacKay, 1998)
» Periodic covariance function and Manifold Gaussian Process
(Calandra et al., 2016)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function
» kik, is a valid covariance function

» k(u(x),u(x")) is a valid covariance function (MacKay, 1998)
» Periodic covariance function and Manifold Gaussian Process
(Calandra et al., 2016)

» Automatic Statistician (Lloyd et al., 2014)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 40



Hyper-Parameters of a GP

The GP possesses a set of hyper-parameters:
» Parameters of the mean function

» Parameters of the covariance function (e.g., length-scales and
signal variance)

» Likelihood parameters (e.g., noise variance o?)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 41



Hyper-Parameters of a GP

The GP possesses a set of hyper-parameters:
» Parameters of the mean function

» Parameters of the covariance function (e.g., length-scales and
signal variance)

» Likelihood parameters (e.g., noise variance o?)

» Train a GP to find a good set of hyper-parameters
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Hyper-Parameters of a GP

The GP possesses a set of hyper-parameters:
» Parameters of the mean function

» Parameters of the covariance function (e.g., length-scales and
signal variance)

» Likelihood parameters (e.g., noise variance o?)
» Train a GP to find a good set of hyper-parameters

» Model selection to find good mean and covariance functions
(can also be automated: Automatic Statistician (Lloyd et al., 2014))

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 6 (kernel /mean /
function parameters , noise variance 0?) i

2

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 0 (kernel/mean /

function parameters , noise variance 0?) i @@
N

» Place a prior p(0) on hyper-parameters
» Posterior over hyper—parameters:

6 X,0
%' pyIX,0) = [ p(ulf, X0p(fX, 0)df

p(01X,y) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 43



Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 0 (kernel/mean /

function parameters , noise variance 0?) i @@
N

» Place a prior p(0) on hyper-parameters
» Posterior over hyper—parameters:

p(0) p(y|X, 0) B
plOR,y) - TS i) = [ plulf 0p(IX, 0)if

» Choose hyper-parameters 6%, such that

0* e argm(;axlog p(6) +log p(y|X,0)
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Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 0 (kernel/mean /

function parameters , noise variance 0?) i @@
N

» Place a prior p(0) on hyper-parameters
» Posterior over hyper—parameters:

p(0) p(ylX,6)
plOR,y) - TS i) = [ plulf 0p(IX, 0)if

» Choose hyper-parameters 6%, such that

0* e argm(;axlog p(6) +log p(y|X,0)

» Maximize marginal likelihood if p(0) = U (uniform prior)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 43



Training via Marginal Likelihood Maximization

GP Training

Maximize the evidence/marginal likelihood (probability of the data
given the hyper-parameters, where the unwieldy f has been
integrated out) M Also called Maximum Likelihood Type-II

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Training via Marginal Likelihood Maximization

GP Training

Maximize the evidence/marginal likelihood (probability of the data
given the hyper-parameters, where the unwieldy f has been
integrated out) M Also called Maximum Likelihood Type-II

Marginal likelihood (with a prior mean function m(-) = 0):

p4IX,0) = | PIFX) p(IX, 6)df
:J N(y|f(X), 62I) N(f(X)]|0,K)df=N(y|0, K+ 02I)
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Training via Marginal Likelihood Maximization

GP Training

Maximize the evidence/marginal likelihood (probability of the data
given the hyper-parameters, where the unwieldy f has been
integrated out) M Also called Maximum Likelihood Type-II

Marginal likelihood (with a prior mean function m(-) = 0):
pyIX,0) = | pIF.X) p(fIX,0)df
:J N(y|f(X), 62I) N(f(X)]|0,K)df=N(y|0, K+ 02I)

Learning the GP hyper-parameters:
0* € arg max log p(y|X, 0)

log p(y|X,0) = ——yTKe y — 3log|Kg| +const, Kg:= K+ 021

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 44



Training via Marginal Likelihood Maximization

Log-marginal likelihood:

logp(y|X,0) = —3y"Ky'y — 1log|Ke| + const, Kg:=K+ 07l

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Training via Marginal Likelihood Maximization

Log-marginal likelihood:

logp(y|X,0) = —3y"Ky'y — 1log|Ke| + const, Kg:=K+ 07l

» Automatic trade-off between data fit and model complexity

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Training via Marginal Likelihood Maximization

Log-marginal likelihood:

logp(y|X,0) = —%yTK y — 3log|Kg| +const, Kg:= K+ 021

» Automatic trade-off between data fit and model complexity

» Gradient-based optimization of hyper-parameters 0:

Ologp(y|X,0) | 1. 10Kg —10Ky
26; =2y Ky 26; Ky'y —tr(Ky 20,
0Ky

- %tr((mxT — K‘;l)&—ei) ,

x = K;ly

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 45



Example: Training Data

2.0 X
1.5 X

1.0

f(x)
x
X

-1.0 %

-1.5 X

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Example: Marginal Likelihood Contour

log-length-scale log(/)

Log-marginal likelihood

-5 -4 -3 -2 -1 0 1

log-noise log(op)

» Three local optima. What do you expect?

Gaussian Processes

Marc Deisenroth @Imperial College London, January 22, 2019

—1.2208
—1.2493
-1.2778
-1.3063
—1.3348
—1.3633
—1.3918
—1.4202
—1.4487
-1.4772
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Demo

Gaussian Processes

https://drafts.distill.pub/gp/

Marc Deisenroth @Imperial College London, January 22, 2019
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex

» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex

» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:

» Short length-scales, low noise (highly nonlinear mean function
with little noise)
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:

» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:
» Short length-scales, low noise (highly nonlinear mean function
with little noise)

» Long length-scales, high noise (everything is considered noise)
» Hybrid
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:
» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)
» Hybrid
» Re-start hyper-parameter optimization from random
initialization to mitigate the problem
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:
» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)
» Hybrid
» Re-start hyper-parameter optimization from random
initialization to mitigate the problem

» With increasing data set size the GP typically ends up in the
“hybrid” mode. Other modes are unlikely.
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Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in

three different situations when optimizing the hyper-parameters:

» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)
» Hybrid
» Re-start hyper-parameter optimization from random
initialization to mitigate the problem

» With increasing data set size the GP typically ends up in the
“hybrid” mode. Other modes are unlikely.

» Ideally, we would integrate the hyper-parameters out
No closed-form solution M Markov chain Monte Carlo

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Model Selection—Mean Function and Kernel

» Assume we have a finite set of models M;, each one specifying a
mean function m; and a kernel k;. How do we find the best one?

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Model Selection—Mean Function and Kernel

» Assume we have a finite set of models M;, each one specifying a
mean function m; and a kernel k;. How do we find the best one?
» Some options:

» Cross validation

*» Bayesian Information Criterion, Akaike Information Criterion

» Compare marginal likelihood values (assuming a uniform prior on
the set of models)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 50



» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Example

Constant kernel, LML=-1.1073

3 T
2 { i

+
1t Il
/>'<\ +
= i il i
0 i
-1 { 1
_2 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Example

Linear kernel, LML=-1.0065

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 51



Example
Matern kernel, LML=-0.8625

3 T

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 51



Example

T T

3 Gaussian kernel, LML=-0.69308

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 51



Application Areas

-

» Reinforcement learning and robotics

» Model value functions and/or dynamics with GPs
*» Bayesian optimization (Experimental Design)

» Model unknown utility functions with GPs

v

Geostatistics
» Spatial modeling (e.g., landscapes, resources)

» Sensor networks
» Time-series modeling and forecasting

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Limitations of Gaussian Processes

Computational and memory complexity
Training set size: N

» Training scales in O(N?)
» Prediction (variances) scales in O(N?)
» Memory requirement: O(ND + N?)

» Practical limit N ~ 10,000

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Limitations of Gaussian Processes

Computational and memory complexity
Training set size: N

» Training scales in O(N?)
» Prediction (variances) scales in O(N?)
» Memory requirement: O(ND + N?)

» Practical limit N ~ 10,000

Some solution approaches:

» Sparse GPs with inducing variables (e.g., Snelson & Ghahramani,
2006; Quifionero-Candela & Rasmussen, 2005; Titsias 2009;
Hensman et al., 2013; Matthews et al., 2016)

» Combination of local GP expert models (e.g., Tresp 2000; Cao &
Fleet 2014; Deisenroth & Ng, 2015)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 53



Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.

» Standardize input data and set initial length-scales ¢ to ~ 0.5.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.

» Standardize input data and set initial length-scales ¢ to ~ 0.5.

> Standardize targets y and set initial signal variance to of ~ 1.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019
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Tips and Tricks for Practitioners

v

To set initial hyper-parameters, use domain knowledge.

v

Standardize input data and set initial length-scales ¢ to ~ 0.5.

v

Standardize targets y and set initial signal variance to oy ~ 1.

v

Often useful: Set initial noise level relatively high (e.g.,

on ~ 0.5 x 0 amplitude), even if you think your data have low
noise. The optimization surface for your other parameters will be
easier to move in.

P https://drafts.distill.pub/gp
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Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.
» Standardize input data and set initial length-scales ¢ to ~ 0.5.
> Standardize targets y and set initial signal variance to of ~ 1.

» Often useful: Set initial noise level relatively high (e.g.,
on ~ 0.5 x 0 amplitude), even if you think your data have low
noise. The optimization surface for your other parameters will be
easier to move in.

» When optimizing hyper-parameters, try random restarts or other
tricks to avoid local optima are advised.

P https://drafts.distill.pub/gp
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Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.
» Standardize input data and set initial length-scales ¢ to ~ 0.5.
> Standardize targets y and set initial signal variance to of ~ 1.

» Often useful: Set initial noise level relatively high (e.g.,
on ~ 0.5 x 0 amplitude), even if you think your data have low
noise. The optimization surface for your other parameters will be
easier to move in.

» When optimizing hyper-parameters, try random restarts or other
tricks to avoid local optima are advised.

» Mitigate the problem of numerical instability (Cholesky
decomposition of K + 021) by penalizing high signal-to-noise
ratios oy /0y,

P https://drafts.distill.pub/gp
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Gaussian Processes
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The Gaussian Distribution

p(xlp, E) = (27) 2 [E Zexp (— L — ) =" (x— 1)

» Mean vector u P Average of the data

» Covariance matrix X P Spread of the data

= P
X Mean
031 95% confidence bound
/ ~
7\
0.25 / \
/ \
0.2f / \
=z / \
a / \
0.15 / \
/ \
o1t / \
/ \
/ \
0.05- / \
AS
7 N
[0 SO T F—— T A T
-4 -3 -2 -1 0 1 2 3 4 5 6
X
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0.3

0.25F

0.2r

p(x)

0.15F

0.1r

0.05r

The Gaussian Distribution

» Mean vector u P Average of the data

3t

2}

_3f

-4 -3

Gaussian Processes

Marc Deisenroth

Mean
—|— 95% confidence boul

p(xlp, E) = (27) 2 [E Zexp (— L — ) =" (x— 1)

» Covariance matrix X P Spread of the data

@Imperial College London, January 22, 2019
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The Gaussian Distribution

O Data
== Pk
03[ X Mean
95% confidence interyal™

0251 /N

’ /

/
0.21 /
= I/ &
0.15} /
/
0.1F /
/
/
0.05- /
/
0 —J—Lﬁgooe-*m—\&—d—

-4 -3 -2 -1 0 1

Gaussian Processes

Marc Deisenroth

3F

p(xlp, E) = (27) 2 [E Zexp (— L — ) =" (x— 1)

» Mean vector u P Average of the data

» Covariance matrix X P Spread of the data

O Data
Mean
r —|— 95% confidence by

@Imperial College London, January 22, 2019
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Conditional

Joint p(x,y)

px,y) =N

Gaussian Processes

Marc Deisenroth

By Ty ny
Py || Byx Ly

@Imperial College London, January 22, 2019
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Conditional

Joint p(x,y)
3 = = =Observation

px,y) =N

Gaussian Processes

Marc Deisenroth

By Ty ny
Py || Byx Ly

@Imperial College London, January 22, 2019
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Conditional
| y Lyy Xy
=" o= ([ |22 22))
W
-l pxly) = N (s Zapy)
2| Moy = Pa + Ty Ty (v — 1)
) .

-6 -4 2 0 2 4
X

Conditional p(x|y) is also Gaussian
» Computationally convenient

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 57



Marginal

Joint p(x,y)
Marginal p(x)

By Lox ny
p(‘xl y) = N 7
<[ My ] [ Lyx Ly

Marginal distribution:

P(x)=fp(x,y)dy
:N(:ux' Zxx)

Gaussian Processes

Marc Deisenroth @Imperial College London, January 22, 2019
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Marginal

3r #Aoaj\?;i?m(axl'};;)(x) I T I
i p(‘xl y) = N . ’ Y

? i ( [ Hy Zyx Ly

2O Marginal distribution:

,1 -

J P(x)=JP(x,y)dy

M = N(py, Zax)

5 *

" 6 4 2 0 2 4
X

» The marginal of a joint Gaussian distribution is Gaussian

» Intuitively: Ignore (integrate out) everything you are not
interested in
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The Gaussian Distribution in the Limit

Consider the joint Gaussian distribution p(x, ), where x € RP and
% € R¥, k — o0 are random variables.
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The Gaussian Distribution in the Limit

Consider the joint Gaussian distribution p(x, ), where x € RP and
% € R¥, k — o0 are random variables.

Then
X Zxx fo
A=)

where Xz € Rf and X7 € RP*K, k — oo.
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The Gaussian Distribution in the Limit

Consider the joint Gaussian distribution p(x, ), where x € RP and
% € R¥, k — o0 are random variables.

Then
X Zxx in
A=)

where Xz € Rf and X7 € RP*K, k — oo.
However, the marginal remains finite

p(x) = fp(x, ¥)dx =N (p,, Zxx)

where we integrate out an infinite number of random variables ¥;.
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Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest
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Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}
(Xother plays the role of ¥ from previous slide)
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Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}
(Xother plays the role of ¥ from previous slide)

i train ):'t-rain Z’crain,test z“train,other

p(x) = N Prest |/ Ltest train Ltest Ltest,other

Hother Zother,t-min Z"o’cher,’ces’c Zother
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Marginal and Conditional in the Limit
» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}

(Xother plays the role of ¥ from previous slide)

i train ):'t-rain Z’crain,test z“train,other

p(x) = N Prest |/ Ltest train Ltest Ltest,other

Hother Zother,t-min Z"o’cher,’ces’c Zother

P(xtrain/ xtest) = f P( Xtrain, Xtest » Xother )d Xother
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Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}
(Xother plays the role of ¥ from previous slide)

i train ):'t-rain Z’crain,test z“train,other

p(x) = N Prest |/ Ltest train Ltest Ltest,other

Hother Zother,t-min Z"o’cher,’ces’c Zother

P(xtrain/ xtest) = f P( Xtrain, Xtest » Xother )d Xother

p(xtest|xtrain) = N(,u*/ Z*)
_ . -1 .
P = Prest T Ztest,tram Ztrain (xtram - ”train)
-1
X, = z"test - Ztest,train Ztrain z"train,test
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Gaussian Process Training: Hierarchical Inference

0: Collection of all hyper-parameters

» Level-1 inference (posterior on f):

p(f1X,y,0) = PUIX ) PUIX,0)

r(ylX,0)
pyIX,0) = [ p(ol7,X) pUIX, F0)dF /‘(
e
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Gaussian Process Training: Hierarchical Inference

0: Collection of all hyper-parameters

» Level-1 inference (posterior on f):

p(f1X,y,0) = PUIX ) PUIX,0)

p(ylX, )
plyIX,0) = [ pylf, X) p(AIX, fO)df /‘(
» Level-2 inference (posterior on 6) L @;

p(y|X,0)p(6)
p(y|X)

p(01X,y) =
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GP as the Limit of an Infinite RBF Network

Consider the universal function approximator

f(x) = hmZ’ynexp( M), xeR, AeR?

i€Z

with 7y, ~ N (0, 1) (random weights)
» Gaussian-shaped basis functions (with variance A2/2) everywhere
on the real axis
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GP as the Limit of an Infinite RBF Network

Consider the universal function approximator

N ; n
fx) = hm Z nexp( W)' xeR, AeR?

i€Z n=1

with 7y, ~ N (0, 1) (random weights)
» Gaussian-shaped basis functions (with variance A2/2) everywhere
on the real axis

ZJ s) exp ( (x;s) > ds = joooo v(s) exp (— (x )_\25)2> ds

i€
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GP as the Limit of an Infinite RBF Network

Consider the universal function approximator

N ; n
fx) = hm Z nexp( W)' xeR, AeR?

i€Z n=1

with 7y, ~ N (0, 1) (random weights)
» Gaussian-shaped basis functions (with variance A2/2) everywhere
on the real axis

ZJ s) exp ( (x;s) > ds = joooo v(s) exp (— (x )_\25)2> ds

i€

» Mean: E[f(x)] =0
» Covariance: Cov[f(x), f(x)] = 67 exp ( ( ZAZ) ) for suitable 62

» GP with mean 0 and Gaussian covariance function
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