Probabilistic Inference (CO-493)

Gaussian Processes

Marc Deisenroth

Department of Computing
Imperial College London

January 22, 2019

Imperial College
London

m.deisenroth@imperial.ac.uk


m.deisenroth@imperial.ac.uk

Overview

Bayesian Linear Regression (1-Slide Refresher)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Bayesian Linear Regression: Model

Prior p(0) = N (my, So)
Likelihood p(y|x,0) = N (y| ¢ (x)6, %)
mq So — y=¢ (x)0+¢e, e~N(0, 7

a » Parameter 0 becomes a latent (random) variable
» Distribution p(0) induces a distribution over
x 0 plausible functions

» Choose a conjugate Gaussian prior

*» Closed-form computations
> Gaussian posterior

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Overview

Priors over Functions

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Distribution over Functions

Consider a linear regression setting
y=a+bx+e, €~N(0 07)
p(a,b) = N'(0, I)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Sampling from the Prior over Functions

Consider a linear regression setting

Gaussian Processes

y=f(x)+e=a+bx+e, €~N(0 07)
p(a,b) = N'(0, I
fi(x) = ai + bix, [a;, bi] ~ p(a,b)

15

10

5

-5

—10

—15

—2 0 2 —10 -5 0 5 10
a T

Marc Deisenroth @Imperial College London, January 22, 2019



Sampling from the Posterior over Functions

Consider a linear regression setting

y=f(x)+e=a+bx+e, €~N(O,J,3)
p(a,b) = N'(0, I)
X =[x1,...,xn], y=[v1,...,yn] Training data

15
10
it
+T
> 0
Thal

5+
-10
—15 - T

—10 -5 0 5 10

x

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Sampling from the Posterior over Functions

Consider a linear regression setting

y=f(x)+e=a+bx+e, e~N(0, (75)
p(a,b) = N(0, I
p(a,b|X,y) = N (mn, Sn) Posterior

4

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Sampling from the Posterior over Functions

Consider a linear regression setting
y=f(x)+e=a+bx+e, e~N(0, 07
[ai, bi] ~ p(a, b|X, y)

fi =a; +bix
4 15
3
10
2
] 5
<
s 0 = 0 +
-1 -
-5
)
~10
-3
—4 —15
D) 0 9 20 5 0 5 10
a x

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Fitting Nonlinear Functions

» Fit nonlinear functions using (Bayesian) linear regression:
Linear combination of nonlinear features

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

10



Fitting Nonlinear Functions

» Fit nonlinear functions using (Bayesian) linear regression:
Linear combination of nonlinear features

» Example: Radial-basis-function (RBF) network

fx) = 0i(x), 6;~N(0,07)
i=1

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

10



Fitting Nonlinear Functions

» Fit nonlinear functions using (Bayesian) linear regression:
Linear combination of nonlinear features

» Example: Radial-basis-function (RBF) network

fx) = Zei(l’i(x)r 6; ~ N(0, ;)
i=1
where

$i(x) = exp ( - %(x —P’i)T(x —P’i))

s 1" 4
for given “centers” u;

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

10



[lustration: Fitting a Radial Basis Function Network

pi(x) = exp (= 3(x —p) " (x — p1;))

2
2 w@é%?
Y /
-2
-5 0 5
X

» Place Gaussian-shaped basis functions ¢; at 25 input locations y;,

linearly spaced in the interval [—5, 3]
11

Marc Deisenroth @Imperial College London, January 22, 2019

Gaussian Processes



Samples from the RBF Prior

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

12



Samples from the RBF Posterior

29471 (61X, y) = N (my, SN)

-5 0 5
X

Gaussian Processes

Marc Deisenroth @Imperial College London, January 22, 2019 13



RBF Posterior

Gaussian Processes

Marc Deisenroth

@Imperial College London, January 22, 2019

14



Limitations

-5 0 5
X
» Feature engineering (what basis functions to use?)

» Finite number of features:

» Above: Without basis functions on the right, we cannot express
any variability of the function
> Ideally: Add more (infinitely many) basis functions

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 15



Approach

» Instead of sampling parameters, which induce a distribution over
functions, sample functions directly
» Place a prior on functions
» Make assumptions on the distribution of functions

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

16



Approach

» Instead of sampling parameters, which induce a distribution over
functions, sample functions directly
» Place a prior on functions
» Make assumptions on the distribution of functions

» Intuition: function = infinitely long vector of function values
» Make assumptions on the distribution of function values

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

16



Approach

» Instead of sampling parameters, which induce a distribution over
functions, sample functions directly
» Place a prior on functions
» Make assumptions on the distribution of functions

» Intuition: function = infinitely long vector of function values
» Make assumptions on the distribution of function values

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

16



Approach

» Instead of sampling parameters, which induce a distribution over
functions, sample functions directly
» Place a prior on functions
» Make assumptions on the distribution of functions

» Intuition: function = infinitely long vector of function values
» Make assumptions on the distribution of function values

» Gaussian process

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

16



Overview

Gaussian Processes
Definition and Derivation
Inference
Covariance Functions and Hyper-Parameters
Training

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

17



Reference

Carl Edward Rasmussen and Christopher K. I. Williams

http://www.gaussianprocess.org/

Gaussian Processes

Marc Deisenroth

@Imperial College London, January 22, 2019

18


http://www.gaussianprocess.org/

Problem Setting

f(x)
SHES T

—_

-2t

5 4321012345678
X

Objective

For a set of observations y; = f(x;) +¢, ¢ ~N (0, ‘752)/ find a
distribution over functions p(f) that explains the data

» Probabilistic regression problem

Marc Deisenroth @Imperial College London, January 22, 2019

Gaussian Processes

19



Problem Setting

5-432-10123456789I
X

For a set of observations y; = f(x;) +¢, &~ N (0, 0?), find a
distribution over functions p(f) that explains the data
» Probabilistic regression problem

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 19



Some Application Areas

» Reinforcement learning and robotics

» Bayesian optimization (experimental design)

v

Geostatistics

v

Sensor networks

» Time-series modeling and forecasting

v

High-energy physics

v

Medical applications

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 20



Gaussian Process

» We will place a distribution p(f) on functions f

» Informally, a function can be considered an infinitely long vector
of function values f = [f1, f2, f3,...]

» A Gaussian process is a generalization of a multivariate Gaussian
distribution to infinitely many variables.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 21



Gaussian Process

» We will place a distribution p(f) on functions f

» Informally, a function can be considered an infinitely long vector
of function values f = [f1, f2, f3,...]

» A Gaussian process is a generalization of a multivariate Gaussian
distribution to infinitely many variables.

Definition (Rasmussen & Williams, 2006)

A Gaussian process (GP) is a collection of random variables fi, f>,.. .,
any finite number of which is Gaussian distributed.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

21



Gaussian Process

» We will place a distribution p(f) on functions f

» Informally, a function can be considered an infinitely long vector
of function values f = [f1, f2, f3,...]

» A Gaussian process is a generalization of a multivariate Gaussian
distribution to infinitely many variables.

Definition (Rasmussen & Williams, 2006)

A Gaussian process (GP) is a collection of random variables fi, f>,.. .,
any finite number of which is Gaussian distributed.

» A Gaussian distribution is specified by a mean vector # and a
covariance matrix X

» A Gaussian process is specified by a mean function m(-) and a
covariance function (kernel) k(-, -)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

21



Mean Function

0

5 4321012345678
X

» The “average” function of the distribution over functions

» Allows us to bias the model (can make sense in
application-specific settings)

» “Agnostic” mean function in the absence of data or prior
knowledge: m(-) = 0 everywhere (for symmetry reasons)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

22



Covariance Function

3
2,
1
0

f(x)

1t
ot

5 4321012345678
X

» The covariance function (kernel) is symmetric and positive

semi-definite
» It allows us to compute covariances/correlations between

(unknown) function values by just looking at the corresponding
inputs:

Cov[f(xi), f(x))] = k(xi, x))
» Kernel trick (Scholkopf & Smola, 2002)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 23



GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

25



GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)
p(y|X)

p(fIX,y) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 25



GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)
p(y|X)

p(fIX,y) =

Prior: p(f) = GP(m, k) » Specify mean m function and kernel k.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

25



GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)
p(y|X)

p(fIX,y) =

Prior: p(f) = GP(m, k) » Specify mean m function and kernel k.
Likelihood (noise model): p(y|f, X) = N (f(X), 02I)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

25



GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)
p(y|X)

p(fIX,y) =

Prior: p(f) = GP(m, k) » Specify mean m function and kernel k.
Likelihood (noise model): p(y|f, X) = N (f(X), 02I)
Marginal likelihood (evidence): p(y|X) = § p(y|f, X)p(f|X)df

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

25



GP Regression as a Bayesian Inference Problem

Objective

For a set of observations y; = f(x;) +€, €~ N (0, 0?),find a
(posterior) distribution over functions p(f|X, y) that explains the
data. Here: X training inputs, y training targets

Training data: X, y. Bayes’ theorem yields

pylf, X) p(f)

X, _
piXy) =

Prior: p(f) = GP(m, k) » Specify mean m function and kernel k.
Likelihood (noise model): p(y|f, X) = N (f(X), 02I)

Marginal hkehhood (evidence): p(y|X) = S p(y|f, X)p(fIX)df
Posterior: p(f|y, X) = GP(mpost, kpost)

ssian Processes Marc Deisenroth @Imperial College London, January 22, 2019

25



GP Prior

» Treat a function as a long vector of function values:

f=1ffa...]

» Look at a distribution over function values f; = f(x;)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

26



GP Prior

» Treat a function as a long vector of function values:

f=1ffa...]

» Look at a distribution over function values f; = f(x;)
> Consider a finite number of N function values f and all other
(infinitely many) function values f. Informally:

- re| [ foD
4 :N 7
Hrg) ([”f] [fo Ly

whére LipeR™™and L re RN*" m — oo,
> ) — Cov[f(xi), f(x))] = k(xi,x})

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

26



GP Prior

» Treat a function as a long vector of function values:

f=1ffa...]

» Look at a distribution over function values f; = f(x;)
> Consider a finite number of N function values f and all other
(infinitely many) function values f. Informally:

- re| [ foD
4 :N 7
Hrg) ([”f] [fo Ly

where Lrpe R™M™ and Lre RN*™ 1 — op.

. zf;}f) = Cov[f(xi), f(x})] = k(x;,x))
» Key property: The marginal remains finite

p(f) = Jp(f,f)df =N (s, Zgr)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

26



GP Prior (2)

» In practice, we always have finite training and test inputs

Xtrain, Xtest-

» Define f, = fi.ov f = firain-

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

27



GP Prior (2)

» In practice, we always have finite training and test inputs

Xtrain, Xtest-

> Define f* = ftest’f = ftrain'
» Then, we obtain the finite marginal

¥ X,
p(f/f*) = Jp(flf*’fother)dfother :N<[z£]’ [Zi; Ei*])

» Computing the joint distribution of an arbitrary number of
training and test inputs boils down to manipulating
(finite-dimensional) Gaussian distributions

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 27



GP Posterior Predictions

y=f(x)+e, 6~N(O,Uﬁ)

» Objective: Find p(f(X)|X,y, X.) for training data X, y and test
inputs X.

» GP prior at training inputs: p(f|X) = N (m(X), K)

> Gaussian Likelihood: p(y|f, X) = N (f(X), 03I)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 28



GP Posterior Predictions

y=f(x)+e, €e~N(0, 03)
Objective: Find p(f(X«)|X,y, X,) for training data X, y and test
inputs X.
GP prior at training inputs: p(f|X) = N (m(X), K)
Gaussian Likelihood: p(y|f, X) = N (f(X), o21)
With f ~ GP it follows that f, f, are jointly Gaussian distributed:

pUf X, Xa) = N ([,,fo}?)]f [uxlf, X) kk((;((};())D

v

v

v

v

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 28



GP Posterior Predictions

y=f(x)+e, 6~N(O,Uﬁ)

Objective: Find p(f(X«)|X,y, X,) for training data X, y and test
inputs X.

GP prior at training inputs: p(f|X) = N (m(X), K)

Gaussian Likelihood: p(y|f, X) = N (f(X), o21)

With f ~ GP it follows that f, f, are jointly Gaussian distributed:

B m(X) K k(X, X
Due to the Gaussian likelihood, we also get (f is unobserved)
B m(X)| | K+o2l  k(X,X.)
Py, f X, X.) = N ([m(x*)] ’ [k(X*,X) k(X*,X*)D

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 28

v

v

v

v

v



GP Posterior Predictions

Prior:

Py, flX, Xs) = N <[TZ1((;}<?)}' [15;(7;(1) kk((?}(”;))D

Posterior predictive distribution p(f,|X,y, X) at test inputs X,

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

29



GP Posterior Predictions

Prior:
Py, flX, Xs) = N ([21((;}2)}' [15;(7;(1) kk((?}(”)(())])

Posterior predictive distribution p(f,|X,y, X) at test inputs X,
obtained by Gaussian conditioning;:

p(flX,y, X)) = N (E[f| X, y, Xu], V[fs| X, y, X4])
E[f«|X, y, X«] = mpost(Xs«) = m(X*)"‘]f(X*/X)(K + (77211)71 (y— m(X)Z

prior mean “Kalman gain” error

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 29



GP Posterior Predictions

Prior:

Py, flX, Xs) = N ([21((;}2)}' [15;(7;(1) kk((?}(”)(())])

Posterior predictive distribution p(f,|X,y, X) at test inputs X,
obtained by Gaussian conditioning;:

E[f«|X, y, Xu] = mpost(X«) = m(Xs)+k(Xs, X) (K + (77211)71 (y —m(X))
W - ~- ~- J
prior mean “Kalman gain” error
VU*‘X/]//X*] = kpost(X*/X*)
= k(X4 Xs)— (X4, X)(K + 02I)'k(X, X )
—_——

<

~
prior variance =0

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 29



GP Posterior
Posterior over functions (with training data X, y):

plylf(), X) p(f()IX)

POX,Y) - p(mx)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

30



GP Posterior
Posterior over functions (with training data X, y):

plylf(), X) p(f()IX)
(yIX )
Using the properties of Gaussians, we obtain (with K := k(X, X))

pIf().X) p(fF()IX) = N(y|f(X), i) GP(m(:), k("))

p(fO)IXy) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

30



GP Posterior
Posterior over functions (with training data X, y):

plylf(), X) p(f()IX)
(yIX )
Using the properties of Gaussians, we obtain (with K := k(X, X))

pIf().X) p(fF()IX) = N(y|f(X), i) GP(m(:), k("))
= Z x GP(mpost(+), kpost (-, -))

mpost(') = () +k('/ )(K+0-7211)_1(y_m(X))

kpost(-,+) = k() —k(-, X) (K + o31) k(X )

p(fO)IXy) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

30



GP Posterior
Posterior over functions (with training data X, y):

plylf(). X) p(f()IX)
p(yIX)
Using the properties of Gaussians, we obtain (with K := k(X, X))

plf().X) p(fO)IX) = N(y|f(X), ozT) GP(m(-), k("))
= Z x GP(mpost(+), kpost (-, -))
Mpost(-) = m(-) + k(-, X)(K + o3 1) " (y — m(X))
kpost(-) = k(- ) = k(-, X)(K + o5 ) k(X -)
Marginal likelihood:

Z= puIX) = | PIEX) pUFX) df = N (y| m(X), K +031)

r(fOIXy) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 30



GP Posterior
Posterior over functions (with training data X, y):

plylf(). X) p(f()IX)
p(yIX)
Using the properties of Gaussians, we obtain (with K := k(X, X))

plf().X) p(fO)IX) = N(y|f(X), ozT) GP(m(-), k("))
= Z x GP(mpost(+), kpost (-, -))
Mpost(-) = m(-) + k(-, X)(K + o3 1) " (y — m(X))
kpost(-) = k(- ) = k(-, X)(K + o5 ) k(X -)
Marginal likelihood:

Z= puIX) = | PIEX) pUFX) df = N (y| m(X), K +031)

Prediction at x..: p(f(x«)| X, y, %) = N(mpost(x*), kpost(x*,x*))

r(fOIXy) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 30



[Mustration: Inference with Gaussian Processes

3,
2
1

X0
-1
-2
5 4 3210123458678

X
Prior belief about the function

Predictive (marginal) mean and variance:

E[f (x:)|x:, @] =m(xy) =0
V[f(xe)|xe, @] = 02 (%) = Kk(xs, %)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

31



O—kl\)(P

f(x)

IMlustration: Inference with Gaussian Processes
N WQ \DQ
B W W
2

5 4321012345678
X

Prior belief about the function

Predictive (marginal) mean and variance:

E[f (x:)|x:, @] =m(xy) =0
V[f(xe)|xe, @] = 02 (%) = Kk(xs, %)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

31



[Mustration: Inference with Gaussian Processes

3
2,
”
x 0
-1
-2
5 4324 0123 4506 7 8
X
Posterior belief about the function

Predictive (marginal) mean and variance:
E[f ()]s, X, y] = m(xs) = k(X, %) T (K + 03 1) "1y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 31



[Mustration: Inference with Gaussian Processes

3
2
1
0

—
x

~

“—

-1
-2
5 4324 0123 4506 7 8
X
Posterior belief about the function

Predictive (marginal) mean and variance:

E[f (x:)|xs, X, y] = m(xs) = k(X, %) (K + 031) 'y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 31



[Mustration: Inference with Gaussian Processes

O—kl\)(P

f(x)

1
-2

5 4321012345678
X

Posterior belief about the function

Predictive (marginal) mean and variance:

BLf(x) e X, 9] = m(x,) = KX, %) (K + 21) 1y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
@Imperial College London, January 22, 2019 31

Gaussian Processes Marc Deisenroth



[Mustration: Inference with Gaussian Processes

SHES SIS

f(x)

-1t
ot

5 4321012345678
X

Posterior belief about the function

Predictive (marginal) mean and variance:

BLf (v2) e, X, 9] = m(x.) = (X, %) T (K + 021) "y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
@Imperial College London, January 22, 2019 31

Gaussian Processes Marc Deisenroth



[Mustration: Inference with Gaussian Processes

o= m o

f(x)

-1t
ot

5 4321012345678
X

Posterior belief about the function

Predictive (marginal) mean and variance:

BLf (v2) e, X, 9] = m(x.) = (X, %) T (K + 021) "y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
@Imperial College London, January 22, 2019 31

Gaussian Processes Marc Deisenroth



[Mustration: Inference with Gaussian Processes

o= m o

f(x)

-1t
ot

5 4321012345678
X

Posterior belief about the function

Predictive (marginal) mean and variance:

BLf (v2) e, X, 9] = m(x.) = (X, %) T (K + 021) "y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
@Imperial College London, January 22, 2019 31

Gaussian Processes Marc Deisenroth



[Mustration: Inference with Gaussian Processes

o= m o

f(x)

-1t
ot

5 4321012345678
X

Posterior belief about the function

Predictive (marginal) mean and variance:

BLf (v2) e, X, 9] = m(x.) = (X, %) T (K + 021) "y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
@Imperial College London, January 22, 2019 31

Gaussian Processes Marc Deisenroth



Illustration: Inference with Gaussian Processes

o= n o

f(x)

-1t
ot

5 4321012345678
X

Posterior belief about the function

Predictive (marginal) mean and variance:

BLf (v2) e, X, 9] = m(x.) = (X, %) T (K + 021) "y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)
@Imperial College London, January 22, 2019 31

Gaussian Processes Marc Deisenroth



Illustration: Inference with Gaussian Processes

5 4324 0123 4506 7 8
X
Posterior belief about the function

Predictive (marginal) mean and variance:

E[f (x:)|xs, X, y] = m(xs) = k(X, %) (K + 031) 'y
VIf(x:) |20, X, y] = 02(xs) = k(xs, x:) — k(X, 24) T(K + 021) 7 k(X x4)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 31



Covariance Function

» A Gaussian process is fully specified by a mean function m and a
kernel/covariance function k

» The covariance function (kernel) is symmetric and positive
semi-definite

» Covariance function encodes high-level structural assumptions
about the latent function f (e.g., smoothness, differentiability,
periodicity)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 33



Gaussian Covariance Function

kGauss(xi/ x]) = 0-]% exp ( - (xi - xj)T(xi - x])/gZ)
> 0y: Amplitude of the latent function

's 0 5
X
» Assumption on latent function: Smooth (oo differentiable)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

34



Gaussian Covariance Function

kGauss(xi/ x]) = 0-]% exp ( - (xi - xj)T(xi - x])/gZ)
> 0y: Amplitude of the latent function
» (: Length-scale. How far do we have to move in input space
before the function value changes significantly, i.e., when do
function values become uncorrelated?
» Smoothness parameter

's 0 5
X
» Assumption on latent function: Smooth (oo differentiable)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

34



Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 4.0

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

35



Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 2.0

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

35



Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 1.0

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

35



Amplitude Parameter o7

kGauss (%i, ) = o7 exp (= (xi —x)) " (x; — x7)/¢?)

Samples from a GP prior with signal variance 0.5

0.0 0.2 0.4 0.6 0.8 1.0

» Controls the amplitude (vertical magnitude) of the function we
wish to model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

35



Length-Scale ¢

kGauss (xi, ) = o7 exp (— (xi —x;) T (xi —x7)/ %)

1.0
—— 0.05

0.1
— 0.2
— 0.5
— 5.0

0.8

Correlation
° °
S o

°
N

00 0.0 0.2 0.4 0.6 0.8 1.0

Il

» How “wiggly” is the function?

» How much information we can transfer to other function values?

» How far do we have to move in input space from x to x’ to make
f(x) and f(x’) uncorrelated?

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 36



Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.05

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37


https://drafts.distill.pub/gp/

Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.1

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37


https://drafts.distill.pub/gp/

Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.2

2.0

15

1.0

0.5

0.0

f(x)

-0.5

-1.0

-1.5

-2.0

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37


https://drafts.distill.pub/gp/

Length-Scale ¢ (2)

kGauss (i, ) = 07 exp (= (xi = xp) T (x; — x7)/¢?)

Samples from a GP prior with lengthscale 0.5

15

1.0

0.5

0.0

f(x)

-0.5

-1.0

-1.5

0.0 0.2 0.4 0.6 0.8 1.0

» Explore interactive diagrams at https://drafts.distill.pub/gp/

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 37


https://drafts.distill.pub/gp/

Matérn Covariance Function

\/§sz'*xj'll) _ \/§sz'fx1|\)
l l

knatz2(xi, X)) = 0F (1 + exp (
> 0y: Amplitude of the latent function
» (: Length-scale. How far do we have to move in input space

before the function value changes significantly?

f(x)

0
X

» Assumption on latent function: 1-times differentiable

Marc Deisenroth @Imperial College London, January 22, 2019 38

Gaussian Processes



Periodic Covariance Function




Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

40



Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function

» kik, is a valid covariance function

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

40



Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function
» kik, is a valid covariance function

» k(u(x),u(x")) is a valid covariance function (MacKay, 1998)
» Periodic covariance function and Manifold Gaussian Process
(Calandra et al., 2016)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

40



Creating New Covariance Functions

Assume k; and k; are valid covariance functions and u(-) is a
(nonlinear) transformation of the input space. Then

» ky + k, is a valid covariance function
» kik, is a valid covariance function

» k(u(x),u(x")) is a valid covariance function (MacKay, 1998)
» Periodic covariance function and Manifold Gaussian Process
(Calandra et al., 2016)

» Automatic Statistician (Lloyd et al., 2014)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 40



Hyper-Parameters of a GP

The GP possesses a set of hyper-parameters:
» Parameters of the mean function

» Parameters of the covariance function (e.g., length-scales and
signal variance)

» Likelihood parameters (e.g., noise variance o?)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 41



Hyper-Parameters of a GP

The GP possesses a set of hyper-parameters:
» Parameters of the mean function

» Parameters of the covariance function (e.g., length-scales and
signal variance)

» Likelihood parameters (e.g., noise variance o?)

» Train a GP to find a good set of hyper-parameters

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 41



Hyper-Parameters of a GP

The GP possesses a set of hyper-parameters:
» Parameters of the mean function

» Parameters of the covariance function (e.g., length-scales and
signal variance)

» Likelihood parameters (e.g., noise variance o?)
» Train a GP to find a good set of hyper-parameters

» Model selection to find good mean and covariance functions
(can also be automated: Automatic Statistician (Lloyd et al., 2014))

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

41



Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 6 (kernel /mean /
function parameters , noise variance 0?) i

2

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

43



Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 0 (kernel/mean /

function parameters , noise variance 0?) i @@
N

» Place a prior p(0) on hyper-parameters
» Posterior over hyper—parameters:

6 X,0
%' pyIX,0) = [ p(ulf, X0p(fX, 0)df

p(01X,y) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 43



Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 0 (kernel/mean /

function parameters , noise variance 0?) i @@
N

» Place a prior p(0) on hyper-parameters
» Posterior over hyper—parameters:

p(0) p(y|X, 0) B
plOR,y) - TS i) = [ plulf 0p(IX, 0)if

» Choose hyper-parameters 6%, such that

0* e argm(;axlog p(6) +log p(y|X,0)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 43



Gaussian Process Training: Hyper-Parameters

GP Training

Find good hyper-parameters 0 (kernel/mean /

function parameters , noise variance 0?) i @@
N

» Place a prior p(0) on hyper-parameters
» Posterior over hyper—parameters:

p(0) p(ylX,6)
plOR,y) - TS i) = [ plulf 0p(IX, 0)if

» Choose hyper-parameters 6%, such that

0* e argm(;axlog p(6) +log p(y|X,0)

» Maximize marginal likelihood if p(0) = U (uniform prior)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 43



Training via Marginal Likelihood Maximization

GP Training

Maximize the evidence/marginal likelihood (probability of the data
given the hyper-parameters, where the unwieldy f has been
integrated out) M Also called Maximum Likelihood Type-II

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

44



Training via Marginal Likelihood Maximization

GP Training

Maximize the evidence/marginal likelihood (probability of the data
given the hyper-parameters, where the unwieldy f has been
integrated out) M Also called Maximum Likelihood Type-II

Marginal likelihood (with a prior mean function m(-) = 0):

p4IX,0) = | PIFX) p(IX, 6)df
:J N(y|f(X), 62I) N(f(X)]|0,K)df=N(y|0, K+ 02I)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 44



Training via Marginal Likelihood Maximization

GP Training

Maximize the evidence/marginal likelihood (probability of the data
given the hyper-parameters, where the unwieldy f has been
integrated out) M Also called Maximum Likelihood Type-II

Marginal likelihood (with a prior mean function m(-) = 0):
pyIX,0) = | pIF.X) p(fIX,0)df
:J N(y|f(X), 62I) N(f(X)]|0,K)df=N(y|0, K+ 02I)

Learning the GP hyper-parameters:
0* € arg max log p(y|X, 0)

log p(y|X,0) = ——yTKe y — 3log|Kg| +const, Kg:= K+ 021

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 44



Training via Marginal Likelihood Maximization

Log-marginal likelihood:

logp(y|X,0) = —3y"Ky'y — 1log|Ke| + const, Kg:=K+ 07l

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

45



Training via Marginal Likelihood Maximization

Log-marginal likelihood:

logp(y|X,0) = —3y"Ky'y — 1log|Ke| + const, Kg:=K+ 07l

» Automatic trade-off between data fit and model complexity

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

45



Training via Marginal Likelihood Maximization

Log-marginal likelihood:

logp(y|X,0) = —%yTK y — 3log|Kg| +const, Kg:= K+ 021

» Automatic trade-off between data fit and model complexity

» Gradient-based optimization of hyper-parameters 0:

Ologp(y|X,0) | 1. 10Kg —10Ky
26; =2y Ky 26; Ky'y —tr(Ky 20,
0Ky

- %tr((mxT — K‘;l)&—ei) ,

x = K;ly

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 45



Example: Training Data

2.0 X
1.5 X

1.0

f(x)
x
X

-1.0 %

-1.5 X

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



Example: Marginal Likelihood Contour

log-length-scale log(/)

Log-marginal likelihood

-5 -4 -3 -2 -1 0 1

log-noise log(op)

» Three local optima. What do you expect?

Gaussian Processes

Marc Deisenroth @Imperial College London, January 22, 2019

—1.2208
—1.2493
-1.2778
-1.3063
—1.3348
—1.3633
—1.3918
—1.4202
—1.4487
-1.4772

47



Demo

Gaussian Processes

https://drafts.distill.pub/gp/

Marc Deisenroth @Imperial College London, January 22, 2019

48


https://drafts.distill.pub/gp/

Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

49



Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex

» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 49



Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex

» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:

» Short length-scales, low noise (highly nonlinear mean function
with little noise)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 49



Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:

» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 49



Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:
» Short length-scales, low noise (highly nonlinear mean function
with little noise)

» Long length-scales, high noise (everything is considered noise)
» Hybrid

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 49



Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:
» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)
» Hybrid
» Re-start hyper-parameter optimization from random
initialization to mitigate the problem

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 49



Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:
» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)
» Hybrid
» Re-start hyper-parameter optimization from random
initialization to mitigate the problem

» With increasing data set size the GP typically ends up in the
“hybrid” mode. Other modes are unlikely.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 49



Marginal Likelihood and Parameter Learning

» The marginal likelihood is non-convex
» Especially in the very-small-data regime, a GP can end up in

three different situations when optimizing the hyper-parameters:

» Short length-scales, low noise (highly nonlinear mean function
with little noise)
» Long length-scales, high noise (everything is considered noise)
» Hybrid
» Re-start hyper-parameter optimization from random
initialization to mitigate the problem

» With increasing data set size the GP typically ends up in the
“hybrid” mode. Other modes are unlikely.

» Ideally, we would integrate the hyper-parameters out
No closed-form solution M Markov chain Monte Carlo

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

49



Model Selection—Mean Function and Kernel

» Assume we have a finite set of models M;, each one specifying a
mean function m; and a kernel k;. How do we find the best one?

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

50



Model Selection—Mean Function and Kernel

» Assume we have a finite set of models M;, each one specifying a
mean function m; and a kernel k;. How do we find the best one?
» Some options:

» Cross validation

*» Bayesian Information Criterion, Akaike Information Criterion

» Compare marginal likelihood values (assuming a uniform prior on
the set of models)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 50



» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

51



Example

Constant kernel, LML=-1.1073

3 T
2 { i

+
1t Il
/>'<\ +
= i il i
0 i
-1 { 1
_2 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

51



Example

Linear kernel, LML=-1.0065

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 51



Example
Matern kernel, LML=-0.8625

3 T

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 51



Example

T T

3 Gaussian kernel, LML=-0.69308

» Four different kernels (mean function fixed to m = 0)
» MAP hyper-parameters for each kernel
» Log-marginal likelihood values for each (optimized) model

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 51



Application Areas

-

» Reinforcement learning and robotics

» Model value functions and/or dynamics with GPs
*» Bayesian optimization (Experimental Design)

» Model unknown utility functions with GPs

v

Geostatistics
» Spatial modeling (e.g., landscapes, resources)

» Sensor networks
» Time-series modeling and forecasting

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

52



Limitations of Gaussian Processes

Computational and memory complexity
Training set size: N

» Training scales in O(N?)
» Prediction (variances) scales in O(N?)
» Memory requirement: O(ND + N?)

» Practical limit N ~ 10,000

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

58



Limitations of Gaussian Processes

Computational and memory complexity
Training set size: N

» Training scales in O(N?)
» Prediction (variances) scales in O(N?)
» Memory requirement: O(ND + N?)

» Practical limit N ~ 10,000

Some solution approaches:

» Sparse GPs with inducing variables (e.g., Snelson & Ghahramani,
2006; Quifionero-Candela & Rasmussen, 2005; Titsias 2009;
Hensman et al., 2013; Matthews et al., 2016)

» Combination of local GP expert models (e.g., Tresp 2000; Cao &
Fleet 2014; Deisenroth & Ng, 2015)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 53



Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

54


https://drafts.distill.pub/gp

Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.

» Standardize input data and set initial length-scales ¢ to ~ 0.5.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

54


https://drafts.distill.pub/gp

Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.

» Standardize input data and set initial length-scales ¢ to ~ 0.5.

> Standardize targets y and set initial signal variance to of ~ 1.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

54


https://drafts.distill.pub/gp

Tips and Tricks for Practitioners

v

To set initial hyper-parameters, use domain knowledge.

v

Standardize input data and set initial length-scales ¢ to ~ 0.5.

v

Standardize targets y and set initial signal variance to oy ~ 1.

v

Often useful: Set initial noise level relatively high (e.g.,

on ~ 0.5 x 0 amplitude), even if you think your data have low
noise. The optimization surface for your other parameters will be
easier to move in.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 54


https://drafts.distill.pub/gp

Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.
» Standardize input data and set initial length-scales ¢ to ~ 0.5.
> Standardize targets y and set initial signal variance to of ~ 1.

» Often useful: Set initial noise level relatively high (e.g.,
on ~ 0.5 x 0 amplitude), even if you think your data have low
noise. The optimization surface for your other parameters will be
easier to move in.

» When optimizing hyper-parameters, try random restarts or other
tricks to avoid local optima are advised.

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 54


https://drafts.distill.pub/gp

Tips and Tricks for Practitioners

» To set initial hyper-parameters, use domain knowledge.
» Standardize input data and set initial length-scales ¢ to ~ 0.5.
> Standardize targets y and set initial signal variance to of ~ 1.

» Often useful: Set initial noise level relatively high (e.g.,
on ~ 0.5 x 0 amplitude), even if you think your data have low
noise. The optimization surface for your other parameters will be
easier to move in.

» When optimizing hyper-parameters, try random restarts or other
tricks to avoid local optima are advised.

» Mitigate the problem of numerical instability (Cholesky
decomposition of K + 021) by penalizing high signal-to-noise
ratios oy /0y,

P https://drafts.distill.pub/gp

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 54


https://drafts.distill.pub/gp

Gaussian Processes

Appendix

Marc Deisenroth

@Imperial College London, January 22, 2019

55



The Gaussian Distribution

p(xlp, E) = (27) 2 [E Zexp (— L — ) =" (x— 1)

» Mean vector u P Average of the data

» Covariance matrix X P Spread of the data

= P
X Mean
031 95% confidence bound
/ ~
7\
0.25 / \
/ \
0.2f / \
=z / \
a / \
0.15 / \
/ \
o1t / \
/ \
/ \
0.05- / \
AS
7 N
[0 SO T F—— T A T
-4 -3 -2 -1 0 1 2 3 4 5 6
X
Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019



0.3

0.25F

0.2r

p(x)

0.15F

0.1r

0.05r

The Gaussian Distribution

» Mean vector u P Average of the data

3t

2}

_3f

-4 -3

Gaussian Processes

Marc Deisenroth

Mean
—|— 95% confidence boul

p(xlp, E) = (27) 2 [E Zexp (— L — ) =" (x— 1)

» Covariance matrix X P Spread of the data

@Imperial College London, January 22, 2019

56



The Gaussian Distribution

O Data
== Pk
03[ X Mean
95% confidence interyal™

0251 /N

’ /

/
0.21 /
= I/ &
0.15} /
/
0.1F /
/
/
0.05- /
/
0 —J—Lﬁgooe-*m—\&—d—

-4 -3 -2 -1 0 1

Gaussian Processes

Marc Deisenroth

3F

p(xlp, E) = (27) 2 [E Zexp (— L — ) =" (x— 1)

» Mean vector u P Average of the data

» Covariance matrix X P Spread of the data

O Data
Mean
r —|— 95% confidence by

@Imperial College London, January 22, 2019

56



Conditional

Joint p(x,y)

px,y) =N

Gaussian Processes

Marc Deisenroth

By Ty ny
Py || Byx Ly

@Imperial College London, January 22, 2019

57



Conditional

Joint p(x,y)
3 = = =Observation

px,y) =N

Gaussian Processes

Marc Deisenroth

By Ty ny
Py || Byx Ly

@Imperial College London, January 22, 2019

57



Conditional
| y Lyy Xy
=" o= ([ |22 22))
W
-l pxly) = N (s Zapy)
2| Moy = Pa + Ty Ty (v — 1)
) .

-6 -4 2 0 2 4
X

Conditional p(x|y) is also Gaussian
» Computationally convenient

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 57



Marginal

Joint p(x,y)
Marginal p(x)

By Lox ny
p(‘xl y) = N 7
<[ My ] [ Lyx Ly

Marginal distribution:

P(x)=fp(x,y)dy
:N(:ux' Zxx)

Gaussian Processes

Marc Deisenroth @Imperial College London, January 22, 2019

)

58



Marginal

3r #Aoaj\?;i?m(axl'};;)(x) I T I
i p(‘xl y) = N . ’ Y

? i ( [ Hy Zyx Ly

2O Marginal distribution:

,1 -

J P(x)=JP(x,y)dy

M = N(py, Zax)

5 *

" 6 4 2 0 2 4
X

» The marginal of a joint Gaussian distribution is Gaussian

» Intuitively: Ignore (integrate out) everything you are not
interested in

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

)

58



The Gaussian Distribution in the Limit

Consider the joint Gaussian distribution p(x, ), where x € RP and
% € R¥, k — o0 are random variables.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

59



The Gaussian Distribution in the Limit

Consider the joint Gaussian distribution p(x, ), where x € RP and
% € R¥, k — o0 are random variables.

Then
X Zxx fo
A=)

where Xz € Rf and X7 € RP*K, k — oo.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

59



The Gaussian Distribution in the Limit

Consider the joint Gaussian distribution p(x, ), where x € RP and
% € R¥, k — o0 are random variables.

Then
X Zxx in
A=)

where Xz € Rf and X7 € RP*K, k — oo.
However, the marginal remains finite

p(x) = fp(x, ¥)dx =N (p,, Zxx)

where we integrate out an infinite number of random variables ¥;.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

59



Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

60



Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}
(Xother plays the role of ¥ from previous slide)

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

60



Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}
(Xother plays the role of ¥ from previous slide)

i train ):'t-rain Z’crain,test z“train,other

p(x) = N Prest |/ Ltest train Ltest Ltest,other

Hother Zother,t-min Z"o’cher,’ces’c Zother

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 60



Marginal and Conditional in the Limit
» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}

(Xother plays the role of ¥ from previous slide)

i train ):'t-rain Z’crain,test z“train,other

p(x) = N Prest |/ Ltest train Ltest Ltest,other

Hother Zother,t-min Z"o’cher,’ces’c Zother

P(xtrain/ xtest) = f P( Xtrain, Xtest » Xother )d Xother

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 60



Marginal and Conditional in the Limit

» In practice, we consider finite training and test data Xrain, Xtest
» Then, x = {xtrain/ Xtest, xother}
(Xother plays the role of ¥ from previous slide)

i train ):'t-rain Z’crain,test z“train,other

p(x) = N Prest |/ Ltest train Ltest Ltest,other

Hother Zother,t-min Z"o’cher,’ces’c Zother

P(xtrain/ xtest) = f P( Xtrain, Xtest » Xother )d Xother

p(xtest|xtrain) = N(,u*/ Z*)
_ . -1 .
P = Prest T Ztest,tram Ztrain (xtram - ”train)
-1
X, = z"test - Ztest,train Ztrain z"train,test

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

60



Gaussian Process Training: Hierarchical Inference

0: Collection of all hyper-parameters

» Level-1 inference (posterior on f):

p(f1X,y,0) = PUIX ) PUIX,0)

r(ylX,0)
pyIX,0) = [ p(ol7,X) pUIX, F0)dF /‘(
e

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 61



Gaussian Process Training: Hierarchical Inference

0: Collection of all hyper-parameters

» Level-1 inference (posterior on f):

p(f1X,y,0) = PUIX ) PUIX,0)

p(ylX, )
plyIX,0) = [ pylf, X) p(AIX, fO)df /‘(
» Level-2 inference (posterior on 6) L @;

p(y|X,0)p(6)
p(y|X)

p(01X,y) =

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 61



GP as the Limit of an Infinite RBF Network

Consider the universal function approximator

f(x) = hmZ’ynexp( M), xeR, AeR?

i€Z

with 7y, ~ N (0, 1) (random weights)
» Gaussian-shaped basis functions (with variance A2/2) everywhere
on the real axis

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

62



GP as the Limit of an Infinite RBF Network

Consider the universal function approximator

N ; n
fx) = hm Z nexp( W)' xeR, AeR?

i€Z n=1

with 7y, ~ N (0, 1) (random weights)
» Gaussian-shaped basis functions (with variance A2/2) everywhere
on the real axis

ZJ s) exp ( (x;s) > ds = joooo v(s) exp (— (x )_\25)2> ds

i€

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 62



GP as the Limit of an Infinite RBF Network

Consider the universal function approximator

N ; n
fx) = hm Z nexp( W)' xeR, AeR?

i€Z n=1

with 7y, ~ N (0, 1) (random weights)
» Gaussian-shaped basis functions (with variance A2/2) everywhere
on the real axis

ZJ s) exp ( (x;s) > ds = joooo v(s) exp (— (x )_\25)2> ds

i€

» Mean: E[f(x)] =0
» Covariance: Cov[f(x), f(x)] = 67 exp ( ( ZAZ) ) for suitable 62

» GP with mean 0 and Gaussian covariance function

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 62




References I

(11

[2]

[3]

141
[5]

[61

71

181

191

[10]

[11]

[12]

G. Bertone, M. P. Deisenroth, J. S. Kim, S. Liem, R. R. de Austri, and M. Welling. Accelerating the BSM Interpretation of
LHC Data with Machine Learning. arXiv preprint arXiv:1611.02704, 2016.

R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth. Manifold Gaussian Processes for Regression. In Proceedings
of the IEEE International Joint Conference on Neural Networks, 2016.

Y. Cao and D. J. Fleet. Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process
Predictions. http://arxiv.org/abs/1410.7827,2014.

N. A. C. Cressie. Statistics for Spatial Data. Wiley-Interscience, 1993.

M. Cutler and J. P. How. Efficient Reinforcement Learning for Robots using Informative Simulated Priors. In IEEE
International Conference on Robotics and Automation, Seattle, WA, May 2015.

M. P. Deisenroth and J. W. Ng. Distributed Gaussian Processes. In Proceedings of the International Conference on Machine
Learning, 2015.

M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to Control a Low-Cost Manipulator using Data-Efficient
Reinforcement Learning. In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.

M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian Process Dynamic Programming. Neurocomputing,
72(7-9):1508-1524, Mar. 2009.

M. P. Deisenroth, R. Turner, M. Huber, U. D. Hanebeck, and C. E. Rasmussen. Robust Filtering and Smoothing with
Gaussian Processes. IEEE Transactions on Automatic Control, 57(7):1865-1871, 2012.

R. Frigola, F. Lindsten, T. B. Schén, and C. E. Rasmussen. Bayesian Inference and Learning in Gaussian Process
State-Space Models with Particle MCMC. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, pages 3156-3164. Curran Associates, Inc., 2013.

N. HajiGhassemi and Marc P. Deisenroth. Approximate Inference for Long-Term Forecasting with Periodic Gaussian
Processes. In Proceedings of the International Conference on Artificial Intelligence and Statistics, April 2014. Acceptance rate:
36%.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian Processes for Big Data. In A. Nicholson and P. Smyth, editors,
Proceedings of the Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2013.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019 63


http://arxiv.org/abs/1410.7827

References II

[13]
[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]

A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient
Algorithms and Empirical Studies. Journal of Machine Learning Research, 9:235-284, Feb. 2008.

M. C. H. Lee, H. Salimbeni, M. P. Deisenroth, and B. Glocker. Patch Kernels for Gaussian Processes in High-Dimensional
Imaging Problems. In NIPS Workshop on Practical Bayesian Nonparametrics, 2016.

J.R. Lloyd, D. Duvenaud, R. Grosse, ]. B. Tenenbaum, and Z. Ghahramani. Automatic Construction and
Natural-Language Description of Nonparametric Regression Models. In AAAI Conference on Artificial Intelligence, pages
1-11, 2014.

D.]. C. MacKay. Introduction to Gaussian Processes. In C. M. Bishop, editor, Neural Networks and Machine Learning,
volume 168, pages 133-165. Springer, Berlin, Germany, 1998.

A.G. d. G. Matthews, ]. Hensman, R. Turner, and Z. Ghahramani. On Sparse Variational Methods and the
Kullback-Leibler Divergence between Stochastic Processes. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, 2016.

M. A. Osborne, S.]J. Roberts, A. Rogers, S. D. Ramchurn, and N. R. Jennings. Towards Real-Time Information Processing
of Sensor Network Data Using Computationally Efficient Multi-output Gaussian Processes. In Proceedings of the
International Conference on Information Processing in Sensor Networks, pages 109-120. IEEE Computer Society, 2008.

J. Quifionero-Candela and C. E. Rasmussen. A Unifying View of Sparse Approximate Gaussian Process Regression.
Journal of Machine Learning Research, 6(2):1939-1960, 2005.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and Machine
Learning. The MIT Press, Cambridge, MA, USA, 2006.

S. Roberts, M. A. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain. Gaussian Processes for Time Series Modelling.
Philosophical Transactions of the Royal Society (Part A), 371(1984), Feb. 2013.

B. Scholkopf and A. J. Smola. Learning with Kernels—Support Vector Machines, Regularization, Optimization, and Beyond.
Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA, USA, 2002.

E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using Pseudo-inputs. In Y. Weiss, B. Schélkopf, and J. C. Platt,
editors, Advances in Neural Information Processing Systems 18, pages 1257-1264. The MIT Press, Cambridge, MA, USA, 2006.
M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, 2009.

V. Tresp. A Bayesian Committee Machine. Neural Computation, 12(11):2719-2741, 2000.

Gaussian Processes Marc Deisenroth @Imperial College London, January 22, 2019

64



	Bayesian Linear Regression (1-Slide Refresher)
	Priors over Functions
	Gaussian Processes
	Definition and Derivation
	Inference
	Covariance Functions and Hyper-Parameters
	Training

	Appendix
	References


	anm1: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


