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Overview
• Review GPs and VI 

• Establish what problems we want to solve


• Discuss alternative approaches


• VI for GPs part 1 (conjugacy) 


• VI for GPs part 2 (scalability) 


• Deep GPs
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Posterior samples:





With noisy observations:



Deriving the posterior
Key ideas:


• Partition the prior


• Write the model as three terms, 
each of which is Gaussian


• Use standard results for 
products of Gaussians


• Integrate out the data variables


NB there are other equivalent ways 
to derive these results




Some notation



The whole curve

These particular values

The whole curve,  
except the data points 



The model
Prior Likelihood

Vector form for the likelihood

Vector form for the model



Variable partitions



Standard result #1: 
conditioning



Standard result #2a:  
product of two Gaussians



Standard result #2b:  
product of two Gaussians



Variable partitions



Alternative partitions  
(for later)



Back to the model







(Woodbury)





Posterior

Marginal likelihood

Or equivalently

Everything here is N2 memory and N3 complexity
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Recap: VI
Key points:


• Make an approximate posterior 
‘as close as possible’ to the true 
posterior


• ‘Closeness’ is measured in KL 
divergence from the 
approximation to the true 
posterior


• Turns integration (hard) into 
optimization (easy)



Recap: VI (1)



Fixed ELBO
KL divergence from 

approximate posterior 
to true posterior

Maximize Minimize



Recap: VI (2)



Recap: VI (2)
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Problems to solve #1: 
conjugacy

• Exact approach only possible with 
Gaussian likelihood


• We want: classification models, heavy 
tailed likelihoods, models for positive 
quantities etc.


• We might include a GP as part of a 
larger model (e.g. Deep GP)



Problems to solve #1: 
conjugacy

Modelling a rate

Classification

Hyperpriors



Problems to solve #2: 
scalability

• Exact approach incurs N2 memory and 
N3 complexity 


• We want to deal with datasets larger 
than N=5000 


• Ideally, we would like to deal with 
datasets that are too large to fit in 
memory
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Alternative approaches: 
non-conjugacy

• Deterministic methods (MAP, Laplace, local variational 
methods, EP, VI, moment matching)


• Sampling methods (Gibbs sampling, HMC, Elliptical slice 
sampling)



Sampling vs deterministic

Asymptotically exact Optimization problem 
Can do model learning jointly with inference  

(Might get a reasonable answer cheaply)

Can’t tell when to stop 
No marginal likelihood 

(Might get a terrible answer given feasible compute)

Inaccurate 



A note on high dimensional 
MCMC algorithms

• Intuitions in low dimensions can be dangerously 
misleading in high dimensions


• High dimensional space is hard to navigate using naïve 
random walks - there are too many bad directions!


• See this excellent introduction for why HMC is a good 
idea in high dimensions: youtu.be/_fnDz2Bz3h8



Alternative approaches: 
scalability

• Approximate the model 


• Approximate the algebra 


• Approximate the posterior


NB there are equivalences between methods


Distinction between approaches not always clear
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Key points

• Use a multivariate Gaussian for the data functions values


• ELBO is a sum of 1D expectations and a closed form KL


• Optimize with respect to variational parameters 





VI HCM
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VI pros and cons

• Log likelihood is smooth (easy 
for accurate 1D integration 


• KL is closed-form and 
computation is parallel


• Easy to optimize (can also use 
natural gradients) 

• Could introduce error if using 
quadrature 


• Only closed form if using a  
Gaussian posterior 


• Requires N + N2 memory* and 
N3 computation 

* Possible to show the covariance has a special structure, 
 reducing memory requirement to 2N.



What about the full 
function?
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• Review GPs and VI


• Establish what problems we want to solve
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• For a variational posterior by 
conditioning on a set of 
inducing points  

• The KL simplifies, just as in 
the dense case


• The variational distribution has 
Gaussian compute marginals, 
if         is Gaussian. These 
marginals can be compute just 
as in the single layer case

Key idea

Inducing  
inputs

Inducing  
outputs



Exact posterior 



Exact posterior 
Approximate posterior

5 inducing points





10 inducing points



20 inducing points





20 evenly spaced inducing points





Variable partitions



Assumption 1



What is this??

Assumption 2

Same as before



Interpretation
• ‘Compression’ of data into the 

inducing points


• ‘Sufficient statistics’


• ‘Pseudo-data’


• Very closely connected to other 
methods. 


• VI has nice behaviour when the 
posterior is close to the true posterior 


• Always safe to optimize inducing 
locations



Can still lead to bad results… 



Further details:
• The data term is a sum - possible to subsample (‘minibatch’) data


• Special case of a Gaussian likelihood: closed form solution exist for m, S  

• Natural gradients can be used, or alternatively direct optimization of the 
mean and square root of the covariance 


• The same approach works for all likelihoods: deals with conjugacy and 
computation simultaneously. 


• Posterior is ‘full-rank’ (not diagonal or degenerate)


• If inducing inputs are the data, then recover the non-conjugate approach 
from earlier 


• Also possible to perform HMC over the inducing points in a hybrid approach. 
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Model



Two layer case

Variational posterior











As in the single layer case, we have

The bound is

Which simplifies to



‘Reparameterization trick’

Integral is now over ‘white’ Gaussian variables. 
Can take the expectation through sampling. 


