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Influence of Prior on Posterior

Generalization error measured by log-predictive density (lpd)

lpd “ log ppy˚|x˚,X,y, `q

for different length-scales ` and different datasets

Shorter length-scale More flexible model Faster increase
in uncertainty away from data Bad generalization properties
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Model Selection

Make predictions equipped with uncertainty

Choice of prior (e.g., length-scale) influences predictions

Different tasks require different priors

How do we select a good prior?

Model Selection in GPs
§ Choose hyper-parameters of the GP

§ Choose good mean function and kernel
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Hyper-Parameters of a GP

The GP possesses a set of hyper-parameters:

Parameters of the mean function

Parameters of the covariance function (e.g., length-scales and
signal variance)

Likelihood parameters (e.g., noise variance �2
n)

Train a GP to find a good set of hyper-parameters

Higher-level model selection to find good mean and covariance
functions
(can also be automated: Automatic Statistician (Lloyd et al., 2014))
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Gaussian Process Training: Hyper-Parameters

GP Training
Find good hyper-parameters ✓ (kernel/mean
function parameters  , noise variance �2

n)

 

�nyixi

f

N

Place a prior pp✓q on hyper-parameters

Posterior over hyper-parameters:

pp✓|X,yq “
pp✓q ppy|X,✓q

ppy|Xq
ppy|X,✓q “

ª
ppy|f,Xqppf |X,✓qdf
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Gaussian Process Training: Hyper-Parameters

Posterior over hyper-parameters:

pp✓|X,yq “
pp✓q ppy|X,✓q

ppy|Xq
ppy|X,✓q “

ª
ppy|fpXqq ppfpXq|✓q df

 

�nyixi

f

N

Choose hyper-parameters ✓˚, such that

✓˚ P argmax
✓

log pp✓q ` log ppy|X,✓q

Maximize marginal likelihood if pp✓q “ U (uniform prior)
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Training via Marginal Likelihood Maximization

GP Training
Maximize the evidence/marginal likelihood (probability of the data
given the hyper-parameters, where the unwieldy f has been
integrated out) Also called Maximum Likelihood Type-II

Marginal likelihood (with a prior mean function mp¨q ” 0):

ppy|X,✓q “
ª

ppy|fpXqq ppfpXq|✓q df

“
ª

N
`
y | fpXq, �2

nI
˘

N
`
fpXq |0, K

˘
df

“ N
`
y |0, K ` �2

nI
˘

Learning the GP hyper-parameters:

✓˚ P argmax
✓

log ppy|X,✓q
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Gradient-based Optimization

Log-marginal likelihood:

log ppy|X,✓q “ ´1
2y

JK´1
✓ y ´ 1

2 log |K✓| ` const

K✓ :“ K ` �2
nI

Gradient-based optimization to get hyper-parameters ✓˚:

B log ppy|X,✓q
B✓i

“ 1
2y

JK´1
✓

BK✓

B✓i
K´1

✓ y ´ 1
2 tr

`
K´1

✓

BK✓

B✓i
˘

“ 1
2 tr

`
p↵↵J ´ K´1

✓ qBK✓

B✓i
˘
,

↵ :“ K´1
✓ y

Marc Deisenroth (UCL) Gaussian Processes March/April 2020 49



Gradient-based Optimization

Log-marginal likelihood:

log ppy|X,✓q “ ´1
2y

JK´1
✓ y ´ 1

2 log |K✓| ` const

K✓ :“ K ` �2
nI

Gradient-based optimization to get hyper-parameters ✓˚:

B log ppy|X,✓q
B✓i

“ 1
2y

JK´1
✓

BK✓

B✓i
K´1

✓ y ´ 1
2 tr

`
K´1

✓

BK✓

B✓i
˘

“ 1
2 tr

`
p↵↵J ´ K´1

✓ qBK✓

B✓i
˘
,

↵ :“ K´1
✓ y

Marc Deisenroth (UCL) Gaussian Processes March/April 2020 49



Marginal Likelihood Illustration1

“ELBO” refers to the log-marginal likelihood

Data-fit term gets worse, but marginal likelihood increases

1Thanks to Mark van der Wilk
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Inspecting the Marginal Likelihood

Log-marginal likelihood:

log ppy|X,✓q “ ´1
2y

JK´1
✓ y ´ 1

2 log |K✓| ` const , K✓ :“ K ` �2
nI

Quadratic term measures whether observation y is within the
variation allowed by the prior

Determinant is the product of the variances of the prior (volume
of the prior) Volume « richness of model class

Marginal likelihood
Automatic trade-off between data fit and model complexity
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Marginal Likelihood Surface

Several plausible hyper-parameters (local optima)

What do you expect to happen in each local optimum?
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Demo

https://drafts.distill.pub/gp/
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Marginal Likelihood and Parameter Learning

The marginal likelihood is non-convex

Especially in the very-small-data regime, a GP can end up in
three different situations when optimizing the hyper-parameters:

Short length-scales, low noise (highly nonlinear mean function
with little noise)
Long length-scales, high noise (everything is considered noise)
Hybrid

Re-start hyper-parameter optimization from random initialization
to mitigate the problem

With increasing data set size the GP typically ends up in the
“hybrid” mode. Other modes are unlikely.

Ideally, we would integrate the hyper-parameters out
No closed-form solution Markov chain Monte Carlo
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Why Does the Marginal Likelihood Work?

Overall goal: Good generalization performance on unseen test
data

Minimizing training error is not a good idea (e.g., maximum
likelihood) Overfitting

Just adding uncertainty does not help either if the model is
wrong, but it makes predictions more cautious

Marginal likelihood seems to find a good balance between fitting
the data and finding a simple model (Occam’s razor)

Why does the marginal likelihood lead to models that generalize
well?
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Marginal Likelihood: Incremental Prediction

“Probability of the training data” given the parameters

General factorization (ignoring inputs X):

ppy|✓q “ ppy1, . . . , yN |✓q

“ ppy1|✓qppy2|y1,✓qppy3|y1, y2,✓q ¨ . . . ¨ ppyN |y1, . . . , yN´1,✓q

“ ppy1|✓q
Nπ

n“2

ppyn|y1, . . . , yn´1,✓q
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Marginal Likelihood: Incremental Prediction (2)

ppy|✓q “ ppy1|✓q
Nπ

n“2

ppyn|y1, . . . , yn´1,✓q

If we think of this as a sequence model (where data arrives
sequentially), the marginal likelihood predicts the nth training
observation given all “previous” observations

Predict training data yn that has not been accounted for (we only
condition on y1, . . . , yn´1) Treat next data point as test data

Intuition: If it continuously predicted well on all N previous
points, it probably will do well next time

Proxy for generalization error on unseen test data
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Marginal Likelihood: Illustration

ppy|✓q “ ppy1, . . . , yN |✓q “ ppy1|✓q
Nπ

n“2

ppyn|y1, . . . , yn´1,✓q
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Marginal Likelihood Computation in Action2

Short length-scale

2Thanks to Mark van der Wilk
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Marginal Likelihood Computation in Action3

Long length-scale

3Thanks to Mark van der Wilk
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Marginal Likelihood Computation in Action4

Optimal length-scale

4Thanks to Mark van der Wilk
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Marginal Likelihood Evolution

Short lengthscale: consistently overestimates variance
No high density, even with observations inside the error bars

Long lengthscale: consistently underestimates variance
Low density because observations are outside the error bars

Optimal lengthscale: trades off both behaviors reasonably well
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Model Selection—Mean Function and Kernel

Assume we have a finite set of models Mi, each one specifying
a mean function mi and a kernel ki. How do we find the best
one?

Some options:
Cross validation
Bayesian Information Criterion, Akaike Information Criterion
Compare marginal likelihood values (assuming a uniform prior on
the set of models)
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Example

x
-4 -3 -2 -1 0 1 2 3 4

f(x
)

-2

-1

0

1

2

3

Four different kernels (mean function fixed to m ” 0)
MAP hyper-parameters for each kernel
Log-marginal likelihood values for each (optimized) model
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Example

x
-4 -3 -2 -1 0 1 2 3 4

f(x
)

-2

-1

0

1

2

3
Constant kernel, LML=-1.1073

Four different kernels (mean function fixed to m ” 0)
MAP hyper-parameters for each kernel
Log-marginal likelihood values for each (optimized) model
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Example

x
-4 -3 -2 -1 0 1 2 3 4

f(x
)

-2

-1

0

1

2

3
Linear kernel, LML=-1.0065

Four different kernels (mean function fixed to m ” 0)
MAP hyper-parameters for each kernel
Log-marginal likelihood values for each (optimized) model
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Example

x
-4 -3 -2 -1 0 1 2 3 4

f(x
)

-2

-1

0

1

2

3
Matern kernel, LML=-0.8625

Four different kernels (mean function fixed to m ” 0)
MAP hyper-parameters for each kernel
Log-marginal likelihood values for each (optimized) model
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Example

x
-4 -3 -2 -1 0 1 2 3 4

f(x
)

-2

-1

0

1

2

3
Gaussian kernel, LML=-0.69308

Four different kernels (mean function fixed to m ” 0)
MAP hyper-parameters for each kernel
Log-marginal likelihood values for each (optimized) model
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GP Training: Illustration5

Prior: fpxq “ ✓sfsmoothpxq ` ✓pfperiodicpxq, with smooth and
periodic GP priors, respectively.

Amount of periodicity vs. smoothness is automatically chosen
by selecting hyper-parameters ✓s, ✓p.

Marginal likelihood learns how to generalize, not just to fit the
data

5Thanks to Mark van der Wilk
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Limitations and Guidelines
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Limitations of Gaussian Processes

Computational and memory complexity
Training set size: N

Training scales in OpN3q
Prediction (variances) scales in OpN2q
Memory requirement: OpND ` N2q

Practical limit N « 10, 000

Some solution approaches:
Sparse GPs with inducing variables (e.g., Snelson &
Ghahramani, 2006; Quiñonero-Candela & Rasmussen, 2005;
Titsias 2009; Hensman et al., 2013; Matthews et al., 2016)
Combination of local GP expert models (e.g., Tresp 2000; Cao &
Fleet 2014; Deisenroth & Ng, 2015)
Variational Fourier features (Hensman et al., 2018)
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Tips and Tricks for Practitioners

To set initial hyper-parameters, use domain knowledge.

Standardize input data and set initial length-scales ` to « 0.5.
Standardize targets y and set initial signal variance to �f « 1.
Often useful: Set initial noise level relatively high (e.g.,
�n « 0.5 ˆ �f amplitude), even if you think your data have low
noise. The optimization surface for your other parameters will be
easier to move in.
When optimizing hyper-parameters, try random restarts or other
tricks to avoid local optima are advised.
Mitigate the problem of numerical instability (Cholesky
decomposition of K ` �2

nI) by penalizing high signal-to-noise
ratios �f{�n

https://drafts.distill.pub/gp
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Application Areas
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Application Areas

−2 0 2−5

0

5

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

 

 

−2

0

2

4

6

8

Reinforcement learning and robotics
Model value functions and/or dynamics with GPs

Bayesian optimization (Experimental Design)
Model unknown utility functions with GPs

Geostatistics
Spatial modeling (e.g., landscapes, resources)

Sensor networks
Time-series modeling and forecasting
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Summary
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Gaussian processes are the gold-standard for regression
Closely related to Bayesian linear regression
Computations boil down to manipulating multivariate Gaussian
distributions
Marginal likelihood objective automatically trades off data fit and
model complexity
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