
T
h
e
r
e
 and Back Again: A Tale of

E
x

p
e
c
t
a
t
io

n
s

a
n
d

S
l

opes. A Neurips 2020 Tut o
r
ia

l

b
y

M
a
r
c

D
e
is

e
n
r
o

th and

T
h
e
r
e
 and Back Again: A Tale of

E
x

p
e
c
t
a
t
io

n
s

a
n
d

S
l

opes. A Neurips 2020 Tut o
r
ia

l

b
y

M
a
r
c

D
e
is

e
n
r
o

th and

in
tegration

n
um

erical

Sw
am

p
s of

A

Numerical Integration
Cheng Soon Ong

Marc Peter Deisenroth

December 2020

Marc Deisenrot
h

an
d

Che
ng

 Soon Ong’s Tut
or

ial at

C
M

Setting

x1 x2 x3
xN

f (x1)

f (x2)

f (x3)

f (xN)

▶ Approximate ∫ b

a

f(x)dx ≈
N∑

n=1

wnf(xn), x ∈ R

▶ Nodes xn and corresponding function values f(xn)
1

Numerical integration (quadrature)

x1 x2 x3
xN

f (x1)

f (x2)

f (x3)

f (xN)

Key idea
Approximate f using an interpolating function that is easy to integrate
(e.g., polynomial)

2

Quadrature approaches

x1 x2 x3
xN

f (x1)

f (x2)

f (x3)

f (xN)

Quadrature Interpolant Nodes
Newton–Cotes low-degree polynomials equidistant
Gaussian orthogonal polynomials roots of polynomial
Bayesian Gaussian process user defined

3

Newton–Cotes Quadrature

Overview

a = x0 x1 x2

f (x0)

f (x1)

xN = b

f (x2)

f (xN)

▶ Equidistant nodes a = x0, . . . , xN = b Partition interval [a, b]
▶ Approximate f in each partition with a low-degree polynomial

▶ Compute integral for each partition analytically and sum them up

4

Overview

a = x0 x1 x2

f (x0)

f (x1)

xN = b

f (x2)

f (xN)

▶ Equidistant nodes a = x0, . . . , xN = b Partition interval [a, b]
▶ Approximate f in each partition with a low-degree polynomial
▶ Compute integral for each partition analytically and sum them up

4

Trapezoidal rule

xn−1 xn xn+1

f(
x)

▶ Partition [a, b] into N segments with equidistant nodes
xn

▶ Locally linear approximation of f between nodes

5

Trapezoidal rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of a trapezoid with corners
(xn, xn+1, f(xn+1), f(xn))∫ xn+1

xn

f(x)dx ≈ h

2

(
f(xn) + f(xn+1)

)
h := |xn+1 − xn| Distance between nodes

▶ Error O(h2)

▶ Full integral:∫ b

a

f(x)dx ≈ h

2

(
f0 + 2f1 + · · ·+ 2fN−1 + fN

)
, fn := f(xn)

6

Trapezoidal rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of a trapezoid with corners
(xn, xn+1, f(xn+1), f(xn))∫ xn+1

xn

f(x)dx ≈ h

2

(
f(xn) + f(xn+1)

)
h := |xn+1 − xn| Distance between nodes

▶ Error O(h2)

▶ Full integral:∫ b

a

f(x)dx ≈ h

2

(
f0 + 2f1 + · · ·+ 2fN−1 + fN

)
, fn := f(xn)

6

Trapezoidal rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of a trapezoid with corners
(xn, xn+1, f(xn+1), f(xn))∫ xn+1

xn

f(x)dx ≈ h

2

(
f(xn) + f(xn+1)

)
h := |xn+1 − xn| Distance between nodes

▶ Error O(h2)

▶ Full integral:∫ b

a

f(x)dx ≈ h

2

(
f0 + 2f1 + · · ·+ 2fN−1 + fN

)
, fn := f(xn)

6

Simpson’s rule

xn−1 xn xn+1

f(
x)

▶ Partition [a, b] into N segments with equidistant nodes
xn

▶ Locally quadratic approximation of f connecting
triplets

(
f(xn−1), f(xn), f(xn+1)

)

7

Simpson’s rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of segment:
xn+1∫

xn−1

f(x)dx ≈ h

3
(fn−1 + 4fn + fn+1)

h := |xn+1 − xn| Distance between nodes

▶ Error: O(h4)
▶ Full integral:∫ b

a

f(x)dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 4fN−2 + 2fN−1 + fN

)

8

Simpson’s rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of segment:
xn+1∫

xn−1

f(x)dx ≈ h

3
(fn−1 + 4fn + fn+1)

h := |xn+1 − xn| Distance between nodes

▶ Error: O(h4)

▶ Full integral:∫ b

a

f(x)dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 4fN−2 + 2fN−1 + fN

)

8

Simpson’s rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of segment:
xn+1∫

xn−1

f(x)dx ≈ h

3
(fn−1 + 4fn + fn+1)

h := |xn+1 − xn| Distance between nodes

▶ Error: O(h4)
▶ Full integral:∫ b

a

f(x)dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 4fN−2 + 2fN−1 + fN

)
8

Example

∫ 1

0

exp(−x2−sin(3x)2)dx

xn−1 xn xn+1
f(

x)

Observed function values
True function
Simpson’s rule
Trapezoidal rule

0 20 40 60 80 100
Number of nodes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

In
te

gr
at

io
n

er
ro

r

Trapezoidal
Simpson

▶ Simpson’s rule yields better approximations
▶ Very good approximations obtained fairly quickly

9

Example

∫ 1

0

exp(−x2−sin(3x)2)dx

xn−1 xn xn+1
f(

x)

Observed function values
True function
Simpson’s rule
Trapezoidal rule

0 20 40 60 80 100
Number of nodes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

In
te

gr
at

io
n

er
ro

r

Trapezoidal
Simpson

▶ Simpson’s rule yields better approximations
▶ Very good approximations obtained fairly quickly

9

Summary: Newton–Cotes quadrature

▶ Approximate integrand between equidistant nodes
with a low-degree polynomial (up to degree 6)

▶ Trapezoidal rule: linear interpolation
▶ Simpson’s rule: quadratic interpolation

Better approximation and smaller integration error

xn−1 xn xn+1

f(
x)

Observed function values
True function
Simpson’s rule
Trapezoidal rule

10

Gaussian Quadrature

Gaussian quadrature

▶ Named after Carl Friedrich Gauß

▶ Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
▶ Central approximation ∫ b

a

f(x)w(x)dx ≈
N∑

n=1

wnf(xn)

▶ Weight function w(x) ≥ 0 (and some other integration-related properties, which
are satisfied if w(x) is a pdf)

▶ Goal: Find nodes xn and weights wn, so that the approximation error is minimized

11

Gaussian quadrature

▶ Named after Carl Friedrich Gauß
▶ Quadrature scheme that no longer relies on equidistant nodes Higher accuracy

▶ Central approximation ∫ b

a

f(x)w(x)dx ≈
N∑

n=1

wnf(xn)

▶ Weight function w(x) ≥ 0 (and some other integration-related properties, which
are satisfied if w(x) is a pdf)

▶ Goal: Find nodes xn and weights wn, so that the approximation error is minimized

11

Gaussian quadrature

▶ Named after Carl Friedrich Gauß
▶ Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
▶ Central approximation ∫ b

a

f(x)w(x)dx ≈
N∑

n=1

wnf(xn)

▶ Weight function w(x) ≥ 0 (and some other integration-related properties, which
are satisfied if w(x) is a pdf)

▶ Goal: Find nodes xn and weights wn, so that the approximation error is minimized

11

Gaussian quadrature

▶ Named after Carl Friedrich Gauß
▶ Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
▶ Central approximation ∫ b

a

f(x)w(x)dx ≈
N∑

n=1

wnf(xn)

▶ Weight function w(x) ≥ 0 (and some other integration-related properties, which
are satisfied if w(x) is a pdf)

▶ Goal: Find nodes xn and weights wn, so that the approximation error is minimized

11

Gaussian quadrature

▶ Named after Carl Friedrich Gauß
▶ Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
▶ Central approximation ∫ b

a

f(x)w(x)dx ≈
N∑

n=1

wnf(xn)

▶ Weight function w(x) ≥ 0 (and some other integration-related properties, which
are satisfied if w(x) is a pdf)

▶ Goal: Find nodes xn and weights wn, so that the approximation error is minimized

11

Central idea

▶ Quadrature nodes xn are the roots of a family of orthogonal polynomials

Nodes no longer equidistant
▶ Exact if f is a polynomial of degree ≤ 2N − 1, i.e.,∫ b

a

f(x)w(x)dx =
N∑

n=1

wnf(xn)

Integral can be computed exactly by evaluating f N times at the optimal
locations xn (roots of an orthogonal polynomial) with corresponding optimal
weights wn

More accurate than Newton–Cotes for the same number of evaluations (with
some memory overhead)

12

Central idea

▶ Quadrature nodes xn are the roots of a family of orthogonal polynomials
Nodes no longer equidistant

▶ Exact if f is a polynomial of degree ≤ 2N − 1, i.e.,∫ b

a

f(x)w(x)dx =
N∑

n=1

wnf(xn)

Integral can be computed exactly by evaluating f N times at the optimal
locations xn (roots of an orthogonal polynomial) with corresponding optimal
weights wn

More accurate than Newton–Cotes for the same number of evaluations (with
some memory overhead)

12

Central idea

▶ Quadrature nodes xn are the roots of a family of orthogonal polynomials
Nodes no longer equidistant

▶ Exact if f is a polynomial of degree ≤ 2N − 1, i.e.,∫ b

a

f(x)w(x)dx =
N∑

n=1

wnf(xn)

Integral can be computed exactly by evaluating f N times at the optimal
locations xn (roots of an orthogonal polynomial) with corresponding optimal
weights wn

More accurate than Newton–Cotes for the same number of evaluations (with
some memory overhead)

12

Central idea

▶ Quadrature nodes xn are the roots of a family of orthogonal polynomials
Nodes no longer equidistant

▶ Exact if f is a polynomial of degree ≤ 2N − 1, i.e.,∫ b

a

f(x)w(x)dx =
N∑

n=1

wnf(xn)

Integral can be computed exactly by evaluating f N times at the optimal
locations xn (roots of an orthogonal polynomial) with corresponding optimal
weights wn

More accurate than Newton–Cotes for the same number of evaluations (with
some memory overhead)

12

Example: Gauß–Hermite quadrature

▶ Solve ∫
f(x) exp(−x2)

w(x)

dx =

∫
f(x)

√
2π

exp(−x2/2)
N
(
x
∣∣0, 1)dx

=
√
2πEx∼N (0,1)

[
f(x)

exp(−x2/2)

]

▶ With change-of-variables trick Expectation w.r.t. a Gaussian measure

Ex∼N (µ,σ2)[f(x)] ≈
1√
π

N∑
n=1

wnf(
√
2σxn + µ).

13

Example: Gauß–Hermite quadrature

▶ Solve ∫
f(x) exp(−x2)

w(x)

dx =

∫
f(x)

√
2π

exp(−x2/2)
N
(
x
∣∣0, 1)dx

=
√
2πEx∼N (0,1)

[
f(x)

exp(−x2/2)

]
▶ With change-of-variables trick Expectation w.r.t. a Gaussian measure

Ex∼N (µ,σ2)[f(x)] ≈
1√
π

N∑
n=1

wnf(
√
2σxn + µ).

13

Example: Gauß–Hermite quadrature (2)

▶ Follow general approximation scheme∫
f(x) exp(−x2)

w(x)

dx ≈
N∑

n=1

wnf(xn)

▶ Nodes x1, . . . , xN are the roots of Hermite polynomial

HN(x) := (−1)n exp
(x2

2

) dn

dxn
exp(−x2)

▶ Weights wn are

wn :=
2N−1N !

√
π

N2H2
N−1(xn)

14

Example: Gauß–Hermite quadrature (2)

▶ Follow general approximation scheme∫
f(x) exp(−x2)

w(x)

dx ≈
N∑

n=1

wnf(xn)

▶ Nodes x1, . . . , xN are the roots of Hermite polynomial

HN(x) := (−1)n exp
(x2

2

) dn

dxn
exp(−x2)

▶ Weights wn are

wn :=
2N−1N !

√
π

N2H2
N−1(xn)

14

Example: Gauß–Hermite quadrature (2)

▶ Follow general approximation scheme∫
f(x) exp(−x2)

w(x)

dx ≈
N∑

n=1

wnf(xn)

▶ Nodes x1, . . . , xN are the roots of Hermite polynomial

HN(x) := (−1)n exp
(x2

2

) dn

dxn
exp(−x2)

▶ Weights wn are

wn :=
2N−1N !

√
π

N2H2
N−1(xn)

14

Overview (Stoer & Bulirsch, 2002)

∫ b

a

w(x)f(x)dx ≈
N∑

n=1

wnf(xn)

[a, b] w(x) Orthogonal polynomial
[−1, 1] 1 Legendre polynomials
[−1, 1] (1− x2)−

1
2 Chebychev polynomials

[0,∞] exp(−x) Laguerre polynomials
[−∞,∞] exp(−x2) Hermite polynomials

15

Application areas

▶ Probabilities for rectangular bivariate/trivariate Gaussian and t distributions
(Genz, 2004)

▶ Integrating out (marginalizing) a few hyper-parameters in a latent-variable model
(INLA; Rue et al., 2009)

▶ Predictions with a Gaussian process classifier (GPFlow; Matthews et al., 2017)

16

Summary: Gaussian quadrature

▶ Orthogonal polynomials to approximate f

▶ Nodes are the roots of the polynomial
▶ Higher accuracy than Newton–Cotes
▶ Method of choice for low-dimensional problems (1–3 dimensions)

▶ Can’t naturally deal with noisy observations
▶ Only works in low dimensions
▶ Approaches that scale better with dimensionality

Bayesian quadrature (up to ≈ 10 dimensions)
Monte Carlo estimation (high dimensions)

17

Summary: Gaussian quadrature

▶ Orthogonal polynomials to approximate f

▶ Nodes are the roots of the polynomial
▶ Higher accuracy than Newton–Cotes
▶ Method of choice for low-dimensional problems (1–3 dimensions)
▶ Can’t naturally deal with noisy observations
▶ Only works in low dimensions

▶ Approaches that scale better with dimensionality
Bayesian quadrature (up to ≈ 10 dimensions)
Monte Carlo estimation (high dimensions)

17

Summary: Gaussian quadrature

▶ Orthogonal polynomials to approximate f

▶ Nodes are the roots of the polynomial
▶ Higher accuracy than Newton–Cotes
▶ Method of choice for low-dimensional problems (1–3 dimensions)
▶ Can’t naturally deal with noisy observations
▶ Only works in low dimensions
▶ Approaches that scale better with dimensionality

Bayesian quadrature (up to ≈ 10 dimensions)
Monte Carlo estimation (high dimensions)

17

Bayesian Quadrature

Bayesian quadrature: Setting and key idea

Z :=

∫
f(x)p(x)dx = Ex∼p[f(x)]

▶ Function f is expensive to evaluate
▶ Integration in moderate (≤ 10) dimensions
▶ Deal with noisy function observations

Key idea
▶ Phrase quadrature as a statistical inference problem

Probabilistic numerics (e.g., Hennig et al., 2015; Briol et al., 2015)
▶ Estimate distribution on Z using a dataset D :=

{
(x1, f(x1)), . . . , (xN , f(xN))

}

18

Bayesian quadrature: Setting and key idea

Z :=

∫
f(x)p(x)dx = Ex∼p[f(x)]

▶ Function f is expensive to evaluate
▶ Integration in moderate (≤ 10) dimensions
▶ Deal with noisy function observations

Key idea
▶ Phrase quadrature as a statistical inference problem

Probabilistic numerics (e.g., Hennig et al., 2015; Briol et al., 2015)
▶ Estimate distribution on Z using a dataset D :=

{
(x1, f(x1)), . . . , (xN , f(xN))

}
18

Bayesian quadrature: How it works

Z :=

∫
f(x)p(x)dx = Ex∼p[f(x)]

▶ Estimate distribution on Z using a dataset
D :=

{
(x1, f(x1)), . . . , (xN , f(xN))

}

▶ Place (Gaussian process) prior distribution on f
and determine the posterior via Bayes’ theorem
(Diaconis 1988; O’Hagan 1991; Rasmussen &
Ghahramani 2003)

Distribution on f induces a distribution on Z

▶ Generalizes to noisy function observations
y = f(x) + ϵ

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

f(
x)

Observations
Integrand
Model

19

Bayesian quadrature: How it works

Z :=

∫
f(x)p(x)dx = Ex∼p[f(x)]

▶ Estimate distribution on Z using a dataset
D :=

{
(x1, f(x1)), . . . , (xN , f(xN))

}
▶ Place (Gaussian process) prior distribution on f

and determine the posterior via Bayes’ theorem
(Diaconis 1988; O’Hagan 1991; Rasmussen &
Ghahramani 2003)

Distribution on f induces a distribution on Z

▶ Generalizes to noisy function observations
y = f(x) + ϵ

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

f(
x)

Observations
Integrand
Model

19

Bayesian quadrature: How it works

Z :=

∫
f(x)p(x)dx = Ex∼p[f(x)]

▶ Estimate distribution on Z using a dataset
D :=

{
(x1, f(x1)), . . . , (xN , f(xN))

}
▶ Place (Gaussian process) prior distribution on f

and determine the posterior via Bayes’ theorem
(Diaconis 1988; O’Hagan 1991; Rasmussen &
Ghahramani 2003)

Distribution on f induces a distribution on Z

▶ Generalizes to noisy function observations
y = f(x) + ϵ

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

f(
x)

Observations
Integrand
Model

19

Bayesian quadrature: Details

Z :=

∫
f(x)p(x)dx), f ∼ GP (0, k)

▶ Exploit linearity of the integral (integral of a GP is another GP)

p(Z) = p

(∫
f(x)p(x)dx)

)
= N

(
Z
∣∣µZ , σ

2
Z

)

µZ =

∫
µpost(x)p(x)dx = Ex[µpost(x)]

σ2
Z =

∫∫
kpost(x,x

′)p(x)p(x′)dxdx′ = Ex,x′ [kpost(x,x
′)]

20

Bayesian quadrature: Details

Z :=

∫
f(x)p(x)dx), f ∼ GP (0, k)

▶ Exploit linearity of the integral (integral of a GP is another GP)

p(Z) = p

(∫
f(x)p(x)dx)

)
= N

(
Z
∣∣µZ , σ

2
Z

)

µZ =

∫
µpost(x)p(x)dx = Ex[µpost(x)]

σ2
Z =

∫∫
kpost(x,x

′)p(x)p(x′)dxdx′ = Ex,x′ [kpost(x,x
′)]

20

Bayesian quadrature: Details

Z :=

∫
f(x)p(x)dx), f ∼ GP (0, k)

▶ Exploit linearity of the integral (integral of a GP is another GP)

p(Z) = p

(∫
f(x)p(x)dx)

)
= N

(
Z
∣∣µZ , σ

2
Z

)

µZ =

∫
µpost(x)p(x)dx = Ex[µpost(x)]

σ2
Z =

∫∫
kpost(x,x

′)p(x)p(x′)dxdx′ = Ex,x′ [kpost(x,x
′)]

20

Bayesian quadrature: Details

Z :=

∫
f(x)p(x)dx), f ∼ GP (0, k)

▶ Exploit linearity of the integral (integral of a GP is another GP)

p(Z) = p

(∫
f(x)p(x)dx)

)
= N

(
Z
∣∣µZ , σ

2
Z

)
µZ =

∫
µpost(x)p(x)dx = Ex[µpost(x)]

σ2
Z =

∫∫
kpost(x,x

′)p(x)p(x′)dxdx′ = Ex,x′ [kpost(x,x
′)]

20

Bayesian quadrature: Details

Z :=

∫
f(x)p(x)dx), f ∼ GP (0, k)

▶ Exploit linearity of the integral (integral of a GP is another GP)

p(Z) = p

(∫
f(x)p(x)dx)

)
= N

(
Z
∣∣µZ , σ

2
Z

)
µZ =

∫
µpost(x)p(x)dx = Ex[µpost(x)]

σ2
Z =

∫∫
kpost(x,x

′)p(x)p(x′)dxdx′ = Ex,x′ [kpost(x,x
′)]

20

Bayesian quadrature: Mean

Ef [Z] = µZ =

expected
predictive mean

Ex∼p[µpost(x)]

µpost(x) = k(x,X)K−1y

=:α

, K := k(X,X)

Ef [Z] =

=:z⊤∫
k(x,X)p(x)dxα = z⊤α

zn =

∫
k(x,xn)p(x)dx = Ex∼p[k(x,xn)]

Z =

∫
f(x)p(x)dx

f ∼ GP (0, k)

p(Z) = N
(
Z
∣∣µZ , σ

2
Z

)
Training data: X,y

21

Bayesian quadrature: Mean

Ef [Z] = µZ =

expected
predictive mean

Ex∼p[µpost(x)]

µpost(x) = k(x,X)K−1y

=:α

, K := k(X,X)

Ef [Z] =

=:z⊤∫
k(x,X)p(x)dxα = z⊤α

zn =

∫
k(x,xn)p(x)dx = Ex∼p[k(x,xn)]

Z =

∫
f(x)p(x)dx

f ∼ GP (0, k)

p(Z) = N
(
Z
∣∣µZ , σ

2
Z

)
Training data: X,y

21

Bayesian quadrature: Mean

Ef [Z] = µZ =

expected
predictive mean

Ex∼p[µpost(x)]

µpost(x) = k(x,X)K−1y

=:α

, K := k(X,X)

Ef [Z] =

=:z⊤∫
k(x,X)p(x)dxα = z⊤α

zn =

∫
k(x,xn)p(x)dx = Ex∼p[k(x,xn)]

Z =

∫
f(x)p(x)dx

f ∼ GP (0, k)

p(Z) = N
(
Z
∣∣µZ , σ

2
Z

)
Training data: X,y

21

Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′ −

∫
k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]− z⊤K−1z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22

Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′ −

∫
k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]− z⊤K−1z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22

Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′

−
∫

k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]

− z⊤K−1z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22

Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′ −

∫
k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]− z⊤

K−1z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22

Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′ −

∫
k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]− z⊤K−1

z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22

Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′ −

∫
k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]− z⊤K−1z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22

Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′ −

∫
k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]− z⊤K−1z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22

Computing kernel expectations

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Solve a different (easier) integration problem

Input distribution p
Kernel k Gaussian non-Gaussian

RBF/
polynomial/

trigonometric
analytical

analytical via
importance-sampling

trick

otherwise Monte Carlo
(numerical integration)

Monte Carlo
(numerical integration)

23

Computing kernel expectations

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Solve a different (easier) integration problem

Input distribution p
Kernel k Gaussian non-Gaussian

RBF/
polynomial/

trigonometric
analytical

analytical via
importance-sampling

trick

otherwise Monte Carlo
(numerical integration)

Monte Carlo
(numerical integration)

23

Kernel expectations in other areas

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Kernel MMD
(e.g., Gretton et al., 2012)

▶ Time-series analysis with Gaussian processes
(e.g., Girard et al., 2003)

▶ Deep Gaussian processes
(e.g., Damianou & Lawrence, 2013)

▶ Model-based RL with Gaussian processes
(e.g., Deisenroth & Rasmussen, 2011)

X

Y

Dependence witness and sample

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

from Gretton et al. (2012)

from Salimbeni et al. (2019)

from Girard et al. (2003)

from Deisenroth &
Rasmussen (2011)

24

Kernel expectations in other areas

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Kernel MMD
(e.g., Gretton et al., 2012)

▶ Time-series analysis with Gaussian processes
(e.g., Girard et al., 2003)

▶ Deep Gaussian processes
(e.g., Damianou & Lawrence, 2013)

▶ Model-based RL with Gaussian processes
(e.g., Deisenroth & Rasmussen, 2011)

X

Y

Dependence witness and sample

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

from Gretton et al. (2012)

from Salimbeni et al. (2019)

from Girard et al. (2003)

from Deisenroth &
Rasmussen (2011)

24

Kernel expectations in other areas

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Kernel MMD
(e.g., Gretton et al., 2012)

▶ Time-series analysis with Gaussian processes
(e.g., Girard et al., 2003)

▶ Deep Gaussian processes
(e.g., Damianou & Lawrence, 2013)

▶ Model-based RL with Gaussian processes
(e.g., Deisenroth & Rasmussen, 2011)

X

Y

Dependence witness and sample

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

from Gretton et al. (2012)

from Salimbeni et al. (2019)

from Girard et al. (2003)

from Deisenroth &
Rasmussen (2011)

24

Kernel expectations in other areas

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Kernel MMD
(e.g., Gretton et al., 2012)

▶ Time-series analysis with Gaussian processes
(e.g., Girard et al., 2003)

▶ Deep Gaussian processes
(e.g., Damianou & Lawrence, 2013)

▶ Model-based RL with Gaussian processes
(e.g., Deisenroth & Rasmussen, 2011)

X

Y

Dependence witness and sample

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

from Gretton et al. (2012)

from Salimbeni et al. (2019)

from Girard et al. (2003)

from Deisenroth &
Rasmussen (2011)

24

Iterative procedure: Where to measure f next?

▶ Define an acquisition function (similar to Bayesian optimization)

▶ Example: Choose next node xn+1 so that the variance of the estimator is reduced
maximally (e.g., O’Hagan, 1991; Gunter et al., 2014)

xn+1 = argmaxx∗

current
variance

V[Z|D]−

new
variance

Ey∗

[
V[Z|D∪{(x∗, y∗)}]

]

25

Iterative procedure: Where to measure f next?

▶ Define an acquisition function (similar to Bayesian optimization)
▶ Example: Choose next node xn+1 so that the variance of the estimator is reduced

maximally (e.g., O’Hagan, 1991; Gunter et al., 2014)

xn+1 = argmaxx∗

current
variance

V[Z|D]−

new
variance

Ey∗

[
V[Z|D∪{(x∗, y∗)}]

]

25

Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

−3 −2 −1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

26

Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

f(
x)

Observations
Integrand
Model

27

Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

▶ Determine p(Z)

−4 −2 0 2 4
Z

0.00

0.05

0.10

0.15

0.20

0.25

p(
Z

)

p(Z)

E[Z]

True Z

28

Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

▶ Determine p(Z)

▶ Find and include new measurement
1. Find optimal node xn+1 by maximizing

an acquisition function
2. Evaluate integrand at xn+1

3. Update GP with
(
xn+1, f(xn+1)

) −3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

f(
x)

Observations
Integrand
Model

29

Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

▶ Determine p(Z)

▶ Find and include new measurement
▶ Compute updated p(Z)

−4 −2 0 2 4
Z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p(
Z

)

Initial p(Z)

New p(Z)

Initial E[Z]

New E[Z]

True Z

30

Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

▶ Determine p(Z)

▶ Find and include new measurement
▶ Compute updated p(Z)

▶ Repeat −3 −2 −1 0 1 2 3
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

Observations
Integrand
Model

31

Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

▶ Determine p(Z)

▶ Find and include new measurement
▶ Compute updated p(Z)

▶ Repeat
−4 −2 0 2 4

Z

0.0

0.2

0.4

0.6

0.8

1.0

p(
Z

)

Initial p(Z)

New p(Z)

Initial E[Z]

New E[Z]

True Z

32

Summary

▶ Central approximation∫
f(x)dx ≈

N∑
n=1

wnf(xn)

▶ Newton–Cotes: Equidistant nodes xn, low-degree
polynomial approximation of f

▶ Gaussian quadrature: Nodes xn as the roots of
interpolating orthogonal polynomials of f

▶ Bayesian quadrature: Integration as a statistical inference
problem; Global approximation of f using a Gaussian
process; scales to moderate dimensions

a = x0 x1 x2

f (x0)

f (x1)

xN = b

f (x2)

f (xN)

−3 −2 −1 0 1 2 3
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

Observations
Integrand
Model

Numerical integration is a really good idea in low dimensions
33

References

Briol, F.-X., Oates, C., Girolami, M., and Osborne, M. A. (2015). Frank–Wolfe Bayesian Quadrature:
Probabilistic Integration with Theoretical Guarantees. In Advances in Neural Information Processing
Systems.

Cutler, M. and How, J. P. (2015). Efficient Reinforcement Learning for Robots using Informative Simulated
Priors. In Proceedings of the International Conference on Robotics and Automation.

Damianou, A. and Lawrence, N. D. (2013). Deep Gaussian Processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics.

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian Processes for Data-Efficient Learning in
Robotics and Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423.

Deisenroth, M. P. and Mohamed, S. (2012). Expectation Propagation in Gaussian Process Dynamical
Systems. In Advances in Neural Information Processing Systems, pages 2618–2626.

34

References (cont.)

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A Model-Based and Data-Efficient Approach to
Policy Search. In Proceedings of the International Conference on Machine Learning.

Deisenroth, M. P., Turner, R., Huber, M., Hanebeck, U. D., and Rasmussen, C. E. (2012). Robust Filtering
and Smoothing with Gaussian Processes. IEEE Transactions on Automatic Control, 57(7):1865–1871.

Diaconis, P. (1988). Bayesian Numerical Analysis. Statistical Decision Theory and Related Topics IV,
1:163–175.

Eleftheriadis, S., Nicholson, T. F. W., Deisenroth, M. P., and Hensman, J. (2017). Identification of Gaussian
Process State Space Models. In Advances in Neural Information Processing Systems.

Genz, A. (2004). Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities.
Statistics and Computing, 14:251–260.

35

References (cont.)

Girard, A., Rasmussen, C. E., Quiñonero Candela, J., and Murray-Smith, R. (2003). Gaussian Process Priors
with Uncertain Inputs—Application to Multiple-Step Ahead Time Series Forecasting. In Advances in
Neural Information Processing Systems.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A Kernel Two-Sample
Test. Journal of Machine Learning Research, 13(25):723–773.

Gunter, T., Osborne, M. A., Garnett, R., Hennig, P., and Roberts, S. J. (2014). Sampling for Inference in
Probabilistic Models with Fast Bayesian Quadrature. In Advances in Neural Information Processing
Systems.

Hennig, P., Osborne, M. A., and Girolami, M. (2015). Probabilistic numerics and uncertainty in
computations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
471:20150142.

Ko, J. and Fox, D. (2009). GP-BayesFilters: Bayesian Filtering using Gaussian Process Prediction and
Observation Models. Autonomous Robots, 27(1):75–90.

36

References (cont.)

O’Hagan, A. (1991). Bayes-Hermite Quadrature. Journal of Statistical Planning and Inference, 29:245–260.
Paleyes, A., Pullin, M., Mahsereci, M., Lawrence, N., and González, J. (2019). Emulation of Physical

Processes with Emukit. In Second Workshop on Machine Learning and the Physical Sciences, NeurIPS.
Salimbeni, H. and Deisenroth, M. P. (2017). Doubly Stochastic Variational Inference for Deep Gaussian

Processes. In Advances in Neural Information Processing Systems.
Salimbeni, H., Dutordoir, V., Hensman, J., and Deisenroth, M. P. (2019). Deep Gaussian Processes with

Importance-Weighted Variational Inference. In Proceedings of the International Conference on Machine
Learning.

Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis. Texts in Applied Mathematics.
Springer-Verlag, 3rd edition.

37

	Newton–Cotes Quadrature
	Gaussian Quadrature
	Bayesian Quadrature
	References

