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Setting

x1 x2 x3
xN

f (x1)

f (x2)

f (x3)

f (xN)

▶ Approximate ∫ b

a

f(x)dx ≈
N∑

n=1

wnf(xn), x ∈ R

▶ Nodes xn and corresponding function values f(xn)
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Numerical integration (quadrature)

x1 x2 x3
xN

f (x1)

f (x2)

f (x3)

f (xN)

Key idea
Approximate f using an interpolating function that is easy to integrate
(e.g., polynomial)

2



Quadrature approaches

x1 x2 x3
xN

f (x1)

f (x2)

f (x3)

f (xN)

Quadrature Interpolant Nodes
Newton–Cotes low-degree polynomials equidistant
Gaussian orthogonal polynomials roots of polynomial
Bayesian Gaussian process user defined

3



Newton–Cotes Quadrature



Overview

a = x0 x1 x2

f (x0)

f (x1)

xN = b

f (x2)

f (xN)

▶ Equidistant nodes a = x0, . . . , xN = b Partition interval [a, b]
▶ Approximate f in each partition with a low-degree polynomial

▶ Compute integral for each partition analytically and sum them up
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Trapezoidal rule

xn−1 xn xn+1

f(
x)

▶ Partition [a, b] into N segments with equidistant nodes
xn

▶ Locally linear approximation of f between nodes

5



Trapezoidal rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of a trapezoid with corners
(xn, xn+1, f(xn+1), f(xn))∫ xn+1

xn

f(x)dx ≈ h

2

(
f(xn) + f(xn+1)

)
h := |xn+1 − xn| Distance between nodes

▶ Error O(h2)

▶ Full integral:∫ b

a

f(x)dx ≈ h

2

(
f0 + 2f1 + · · ·+ 2fN−1 + fN

)
, fn := f(xn)
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Simpson’s rule

xn−1 xn xn+1

f(
x)

▶ Partition [a, b] into N segments with equidistant nodes
xn

▶ Locally quadratic approximation of f connecting
triplets

(
f(xn−1), f(xn), f(xn+1)

)

7



Simpson’s rule (2)

xn−1 xn xn+1

f(
x)

▶ Area of segment:
xn+1∫

xn−1

f(x)dx ≈ h

3
(fn−1 + 4fn + fn+1)

h := |xn+1 − xn| Distance between nodes

▶ Error: O(h4)
▶ Full integral:∫ b

a

f(x)dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 4fN−2 + 2fN−1 + fN

)
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Example

∫ 1

0

exp(−x2−sin(3x)2)dx

xn−1 xn xn+1
f(

x)

Observed function values
True function
Simpson’s rule
Trapezoidal rule

0 20 40 60 80 100
Number of nodes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

In
te

gr
at

io
n

er
ro

r

Trapezoidal
Simpson

▶ Simpson’s rule yields better approximations
▶ Very good approximations obtained fairly quickly
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Summary: Newton–Cotes quadrature

▶ Approximate integrand between equidistant nodes
with a low-degree polynomial (up to degree 6)

▶ Trapezoidal rule: linear interpolation
▶ Simpson’s rule: quadratic interpolation

Better approximation and smaller integration error

xn−1 xn xn+1

f(
x)

Observed function values
True function
Simpson’s rule
Trapezoidal rule
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Gaussian Quadrature



Gaussian quadrature

▶ Named after Carl Friedrich Gauß

▶ Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
▶ Central approximation ∫ b

a

f(x)w(x)dx ≈
N∑

n=1

wnf(xn)

▶ Weight function w(x) ≥ 0 (and some other integration-related properties, which
are satisfied if w(x) is a pdf)

▶ Goal: Find nodes xn and weights wn, so that the approximation error is minimized

11
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Central idea

▶ Quadrature nodes xn are the roots of a family of orthogonal polynomials

Nodes no longer equidistant
▶ Exact if f is a polynomial of degree ≤ 2N − 1, i.e.,∫ b

a

f(x)w(x)dx =
N∑

n=1

wnf(xn)

Integral can be computed exactly by evaluating f N times at the optimal
locations xn (roots of an orthogonal polynomial) with corresponding optimal
weights wn

More accurate than Newton–Cotes for the same number of evaluations (with
some memory overhead)
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Example: Gauß–Hermite quadrature

▶ Solve ∫
f(x) exp(−x2)

w(x)

dx =

∫
f(x)

√
2π

exp(−x2/2)
N
(
x
∣∣0, 1)dx

=
√
2πEx∼N (0,1)

[
f(x)

exp(−x2/2)

]

▶ With change-of-variables trick Expectation w.r.t. a Gaussian measure

Ex∼N (µ,σ2)[f(x)] ≈
1√
π

N∑
n=1

wnf(
√
2σxn + µ).

13
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Example: Gauß–Hermite quadrature (2)

▶ Follow general approximation scheme∫
f(x) exp(−x2)

w(x)

dx ≈
N∑

n=1

wnf(xn)

▶ Nodes x1, . . . , xN are the roots of Hermite polynomial

HN(x) := (−1)n exp
(x2

2

) dn

dxn
exp(−x2)

▶ Weights wn are

wn :=
2N−1N !

√
π

N2H2
N−1(xn)

14
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Overview (Stoer & Bulirsch, 2002)

∫ b

a

w(x)f(x)dx ≈
N∑

n=1

wnf(xn)

[a, b] w(x) Orthogonal polynomial
[−1, 1] 1 Legendre polynomials
[−1, 1] (1− x2)−

1
2 Chebychev polynomials

[0,∞] exp(−x) Laguerre polynomials
[−∞,∞] exp(−x2) Hermite polynomials

15



Application areas

▶ Probabilities for rectangular bivariate/trivariate Gaussian and t distributions
(Genz, 2004)

▶ Integrating out (marginalizing) a few hyper-parameters in a latent-variable model
(INLA; Rue et al., 2009)

▶ Predictions with a Gaussian process classifier (GPFlow; Matthews et al., 2017)

16



Summary: Gaussian quadrature

▶ Orthogonal polynomials to approximate f

▶ Nodes are the roots of the polynomial
▶ Higher accuracy than Newton–Cotes
▶ Method of choice for low-dimensional problems (1–3 dimensions)

▶ Can’t naturally deal with noisy observations
▶ Only works in low dimensions
▶ Approaches that scale better with dimensionality

Bayesian quadrature (up to ≈ 10 dimensions)
Monte Carlo estimation (high dimensions)
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Bayesian Quadrature



Bayesian quadrature: Setting and key idea

Z :=

∫
f(x)p(x)dx = Ex∼p[f(x)]

▶ Function f is expensive to evaluate
▶ Integration in moderate (≤ 10) dimensions
▶ Deal with noisy function observations

Key idea
▶ Phrase quadrature as a statistical inference problem

Probabilistic numerics (e.g., Hennig et al., 2015; Briol et al., 2015)
▶ Estimate distribution on Z using a dataset D :=

{
(x1, f(x1)), . . . , (xN , f(xN))

}

18
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Bayesian quadrature: How it works

Z :=

∫
f(x)p(x)dx = Ex∼p[f(x)]

▶ Estimate distribution on Z using a dataset
D :=

{
(x1, f(x1)), . . . , (xN , f(xN))

}

▶ Place (Gaussian process) prior distribution on f
and determine the posterior via Bayes’ theorem
(Diaconis 1988; O’Hagan 1991; Rasmussen &
Ghahramani 2003)

Distribution on f induces a distribution on Z

▶ Generalizes to noisy function observations
y = f(x) + ϵ

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

f(
x)

Observations
Integrand
Model
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Bayesian quadrature: Details

Z :=

∫
f(x)p(x)dx), f ∼ GP (0, k)

▶ Exploit linearity of the integral (integral of a GP is another GP)

p(Z) = p

(∫
f(x)p(x)dx)

)
= N

(
Z
∣∣µZ , σ

2
Z

)

µZ =

∫
µpost(x)p(x)dx = Ex[µpost(x)]

σ2
Z =

∫∫
kpost(x,x

′)p(x)p(x′)dxdx′ = Ex,x′ [kpost(x,x
′)]

20
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Bayesian quadrature: Mean

Ef [Z] = µZ =

expected
predictive mean

Ex∼p[µpost(x)]

µpost(x) = k(x,X)K−1y

=:α

, K := k(X,X)

Ef [Z] =

=:z⊤∫
k(x,X)p(x)dxα = z⊤α

zn =

∫
k(x,xn)p(x)dx = Ex∼p[k(x,xn)]

Z =

∫
f(x)p(x)dx

f ∼ GP (0, k)

p(Z) = N
(
Z
∣∣µZ , σ

2
Z

)
Training data: X,y

21
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Bayesian quadrature: Variance

Vf [Z] = σ2
Z =

expected posterior covariance

Ex,x′∼p[kpost(x,x
′)]

=

∫∫
k(x,x′)

prior covariance

− k(x,X)K−1k(X,x′)

information from training data

p(x)p(x′)dxdx′

=

∫∫
k(x,x′)p(x)p(x′)dxdx′ −

∫
k(x,X)p(x)dx

=z⊤

K−1

∫
k(X,x′)p(x′)dx′

=z′

= Ex,x′ [k(x,x′)]− z⊤K−1z′

= Ex,x′ [k(x,x′)]− Ex[k(x,X)]K−1Ex′ [k(X,x′)]

22
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Computing kernel expectations

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Solve a different (easier) integration problem

Input distribution p
Kernel k Gaussian non-Gaussian

RBF/
polynomial/

trigonometric
analytical

analytical via
importance-sampling

trick

otherwise Monte Carlo
(numerical integration)

Monte Carlo
(numerical integration)
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Kernel expectations in other areas

Ex∼p[k(x,X)], Ex,x′∼p[k(x,x
′)]

▶ Kernel MMD
(e.g., Gretton et al., 2012)

▶ Time-series analysis with Gaussian processes
(e.g., Girard et al., 2003)

▶ Deep Gaussian processes
(e.g., Damianou & Lawrence, 2013)

▶ Model-based RL with Gaussian processes
(e.g., Deisenroth & Rasmussen, 2011)
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Iterative procedure: Where to measure f next?

▶ Define an acquisition function (similar to Bayesian optimization)

▶ Example: Choose next node xn+1 so that the variance of the estimator is reduced
maximally (e.g., O’Hagan, 1991; Gunter et al., 2014)

xn+1 = argmaxx∗

current
variance

V[Z|D]−

new
variance

Ey∗

[
V[Z|D∪{(x∗, y∗)}]

]

25



Iterative procedure: Where to measure f next?

▶ Define an acquisition function (similar to Bayesian optimization)
▶ Example: Choose next node xn+1 so that the variance of the estimator is reduced

maximally (e.g., O’Hagan, 1991; Gunter et al., 2014)

xn+1 = argmaxx∗

current
variance

V[Z|D]−

new
variance

Ey∗

[
V[Z|D∪{(x∗, y∗)}]

]

25



Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx
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Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn
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▶ Fit Gaussian process to observations
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Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

▶ Determine p(Z)

▶ Find and include new measurement
1. Find optimal node xn+1 by maximizing

an acquisition function
2. Evaluate integrand at xn+1

3. Update GP with
(
xn+1, f(xn+1)
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Example with EmuKit (Paleyes et al., 2019)

Compute

Z =

∫ 3

−3

e−x2−sin2(3x)dx

▶ Fit Gaussian process to observations
f(x1), . . . , f(xn) at nodes x1, . . . , xn

▶ Determine p(Z)

▶ Find and include new measurement
▶ Compute updated p(Z)
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Example with EmuKit (Paleyes et al., 2019)
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Example with EmuKit (Paleyes et al., 2019)

Compute
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Summary

▶ Central approximation∫
f(x)dx ≈

N∑
n=1

wnf(xn)

▶ Newton–Cotes: Equidistant nodes xn, low-degree
polynomial approximation of f

▶ Gaussian quadrature: Nodes xn as the roots of
interpolating orthogonal polynomials of f

▶ Bayesian quadrature: Integration as a statistical inference
problem; Global approximation of f using a Gaussian
process; scales to moderate dimensions

a = x0 x1 x2

f (x0)

f (x1)

xN = b

f (x2)

f (xN)

−3 −2 −1 0 1 2 3
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

Observations
Integrand
Model

Numerical integration is a really good idea in low dimensions
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