
CENTRE FOR ARTIFICIAL INTELLIGENCE

 Message Passing Algorithms in Machine Learning 

 So Takao 
 so.takao@ucl.ac.uk 
 www.sotakao.com

mailto:so.takao@ucl.ac.uk
http://www.sotakao.com


What we will cover in this lecture
We will study machine learning algorithms on graphs 

Images

Molecules

Social networks

Belief network



What we will cover in this lecture
We will study machine learning algorithms on graphs 

Images

Molecules

Social networks

Belief network



A Graph is a collection  of 

• : nodes 

• : edges 

such that an edge  can be associated with a pair of nodes . 

(V, E)
V
E

e ∈ E u, v ∈ V

What are graphs?

A graph

Node

Edge



• A graph is directed if the ordering of nodes associated to an edge “matters” 

i.e.,  mapping an edge to an ordered tuple of nodes. ∃ ϕ : E → V × V

A directed graph

Node

Edge



• A graph is directed if the ordering of nodes associated to an edge “matters” 

i.e.,  mapping an edge to an ordered tuple of nodes. ∃ ϕ : E → V × V

A directed graph

Node

Edge

• Edges  in a directed graph represented graphically as arrowsϕ(e) = (a, b)

a

b

e



• A graph is directed if the ordering of nodes associated to an edge “matters” 

i.e.,  mapping an edge to an ordered tuple of nodes. ∃ ϕ : E → V × V

A directed graph

Node

Edge

• Edges  in a directed graph represented graphically as arrowsϕ(e) = (a, b)
• A graph is undirected if ordering of nodes in an edge doesn’t matter

a

b

e



• The edges  of a graph define an adjacency relation  on : 

For , 

. 

E ∼ V
x, y ∈ V

x ∼ y ⇔ {(x, y)} ∪ {(y, x)} ⊂ ϕ(E)

x1

x2

x3

x4

x5



• The edges  of a graph define an adjacency relation  on : 

For , 

. 

E ∼ V
x, y ∈ V

x ∼ y ⇔ {(x, y)} ∪ {(y, x)} ⊂ ϕ(E)

x1

x2

x3

x4

x5

On the graph on the left, we have e.g. 

•  

•  

•  

•

x1 ∼ x2

x4 ∼ x5

x1 ≁ x4

x3 ≁ x5



• The edges  of a graph define an adjacency relation  on : 

For , 

. 

E ∼ V
x, y ∈ V

x ∼ y ⇔ {(x, y)} ∪ {(y, x)} ⊂ ϕ(E)

x1

x2

x3

x4

x5

On the graph on the left, we have e.g. 

•  

•  

•  

•

x1 ∼ x2

x4 ∼ x5

x1 ≁ x4

x3 ≁ x5

• If , we say that  is a neighbour of  and vice versa x ∼ y y x



• Adjacency matrix  encodes the adjacency structure of : 

  

• Degree matrix  encodes the degree of connectivity of each node: 

 

A G

Aij = {
1, if xi ∼ xj,
0, if xi ≁ xj .

D

Dij = { |Neighbours(xi) | , if i = j,
0, if i ≠ j .



• Adjacency matrix  encodes the adjacency structure of : 

  

• Degree matrix  encodes the degree of connectivity of each node: 

 

A G

Aij = {
1, if xi ∼ xj,
0, if xi ≁ xj .

D

Dij = { |Neighbours(xi) | , if i = j,
0, if i ≠ j .

x1 x2

x3



• Adjacency matrix  encodes the adjacency structure of : 

  

• Degree matrix  encodes the degree of connectivity of each node: 

 

A G

Aij = {
1, if xi ∼ xj,
0, if xi ≁ xj .

D

Dij = { |Neighbours(xi) | , if i = j,
0, if i ≠ j .

x1 x2

x3 A = (
0 0 1
0 0 1
1 1 0)



• Adjacency matrix  encodes the adjacency structure of : 

  

• Degree matrix  encodes the degree of connectivity of each node: 

 

A G

Aij = {
1, if xi ∼ xj,
0, if xi ≁ xj .

D

Dij = { |Neighbours(xi) | , if i = j,
0, if i ≠ j .

x1 x2

x3 A = (
0 0 1
0 0 1
1 1 0)

 D = (
1 0 0
0 1 0
0 0 2)



Types of Graphs
1. Fully-connected graphs



Types of Graphs
1. Fully-connected graphs

• Undirected

• Each node is connected to every other nodes



Types of Graphs
2. Directed Acyclic Graph (DAG)



Types of Graphs
2. Directed Acyclic Graph (DAG)

• Directed

• Does not contain any directed cycles



Types of Graphs
2. Directed Acyclic Graph (DAG) 

• Directed 

• Does not contain any directed cycles



Types of Graphs
2. Directed Acyclic Graph (DAG) 

• Directed 

• Does not contain any directed cycles



Types of Graphs
3. Trees and polytrees



Types of Graphs
3. Trees and polytrees

• A tree is an undirected graph such that two 
nodes are connected by a unique path



Types of Graphs
3. Trees and polytrees

• A tree is an undirected graph such that two 
nodes are connected by a unique path



Types of Graphs
3. Trees and polytrees

• A tree is an undirected graph such that two 
nodes are connected by a unique path



Types of Graphs
3. Trees and polytrees 

• A tree is an undirected graph such that two 
nodes are connected by a unique path 

• A polytree is a DAG such that its underlying 
structure is a tree 



Types of Graphs
3. Trees and polytrees

• A tree is an undirected graph such that two 
nodes are connected by a unique path

• A polytree is a DAG such that its underlying 
structure is a tree

• Designating node  as a “root”, we say that 
node  is a parent of node  if it is a 
neighbouring node on the path to 

a
b c

a

“Root”
a

b

c

“Parent of c”



Types of Graphs
3. Trees and polytrees

• A tree is an undirected graph such that two 
nodes are connected by a unique path

• A polytree is a DAG such that its underlying 
structure is a tree

• Designating node  as a “root”, we say that 
node  is a parent of node  if it is a 
neighbouring node on the path to 

a
b c

a
• Likewise  is a child of  if  is it’s parentd c c

“Root”
a

b

c

d

“Parent of c”

“Child of c”



Types of Graphs
4. Bipartite graphs



Types of Graphs
4. Bipartite graphs

• Nodes can be divided into two “classes” 

(say A and B)

• Each edge connects a node in A with a node 

in B

• Can be either directed or undirected

A B



Types of Graphs
5. Subgraphs



Types of Graphs
5. Subgraphs

Let  be a graph.G = (V, E)



Types of Graphs
5. Subgraphs

Let  be a graph.G = (V, E)

• A subgraph  of  is a graph 

such that  and 

G1 = (V1, E1) G

V1 ⊂ V E1 ⊂ E



Types of Graphs
5. Subgraphs

Let  be a graph.G = (V, E)

• A subgraph  of  is a graph 

such that  and 

G1 = (V1, E1) G

V1 ⊂ V E1 ⊂ E
• If a subgraph is fully-connected, then we call 

it a clique



Message passing
Algorithms defined on graphs where information is passed between neighbours



Topics covered in this lecture
1. Probabilistic graphical models (PGMs) 

2. Belief propagation on PGMs 

3. Some extensions of belief propagation 

4. Message passing neural networks



Supplementary materials
• Github link: https://github.com/sotakao/ml-seminar-ucl 

• References provided at the end of each section 

• See Bishop’s book [1] for necessary background in graphs and probability theory 

[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: 
springer, 2006. 

https://github.com/sotakao/ml-seminar-ucl


1. Probabilistic Graphical Models (PGMs)



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:
• If  is observed, are the variables  and  independent?x4 x2 x6



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:
• If  is observed, are the variables  and  independent?x4 x2 x6

i.e.,      p(x2, x6 |x4) = p(x2 |x4) p(x6 |x4)
?



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:
• If  is observed, are the variables  and  independent?x4 x2 x6

i.e.,      p(x2, x6 |x4) = p(x2 |x4) p(x6 |x4)
• Which variable should we observe for  and  to be independent?x6 x7

?



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:
• If  is observed, are the variables  and  independent?x4 x2 x6

i.e.,      p(x2, x6 |x4) = p(x2 |x4) p(x6 |x4)
• Which variable should we observe for  and  to be independent?x6 x7

i.e.,      p(x6, x7 |?) = p(x6 |?) p(x7 |?)

?



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:
• If  is observed, are the variables  and  independent?x4 x2 x6

i.e.,      p(x2, x6 |x4) = p(x2 |x4) p(x6 |x4)
• Which variable should we observe for  and  to be independent?x6 x7

i.e.,      p(x6, x7 |?) = p(x6 |?) p(x7 |?)

?



Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:
• If  is observed, are the variables  and  independent?x4 x2 x6

i.e.,      p(x2, x6 |x4) = p(x2 |x4) p(x6 |x4)
• Which variable should we observe for  and  to be independent?x6 x7

i.e.,      p(x6, x7 |?) = p(x6 |?) p(x7 |?)
PGMs provide elegant answers to such questions!

?



Bayesian Networks

x1 x2

x3 x4



Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions

Example:
p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

x1 x2

x3 x4



Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions

Example:
p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

• Represented by a directed acyclic graph (DAG)

x1 x2

x3 x4



Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions

Example:
p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

• Represented by a directed acyclic graph (DAG)
• Nodes represent variables in the model

x1 x2

x3 x4



Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions

Example:
p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

• Represented by a directed acyclic graph (DAG)
• Nodes represent variables in the model
• Edges represent causal relations between variables

x1 x2

x3 x4



Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions

Example:
p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

• Represented by a directed acyclic graph (DAG)
• Nodes represent variables in the model
• Edges represent causal relations between variables

x1 x2

x3 x4



Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions

Example:
p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

• Represented by a directed acyclic graph (DAG)
• Nodes represent variables in the model
• Edges represent causal relations between variables

x1 x2

x3 x4



Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions

Example:
p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

• Represented by a directed acyclic graph (DAG)
• Nodes represent variables in the model
• Edges represent causal relations between variables

x1 x2

x3 x4



Independence



Independence

Two nodes are independent if there are no paths connecting them



Independence

Two nodes are independent if there are no paths connecting them

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4) p(x3 |x1, x2) p(x2 |x1) p(x1)
= p(x4) p(x1, x2, x3)



Independence

Two nodes are independent if there are no paths connecting them

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4) p(x3 |x1, x2) p(x2 |x1) p(x1)
= p(x4) p(x1, x2, x3)



Independence

Two nodes are independent if there are no paths connecting them

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4) p(x3 |x1, x2) p(x2 |x1) p(x1)
= p(x4) p(x1, x2, x3)

              is independent of all other nodesx4



d-Separation and conditional independence



d-Separation and conditional independence

Two nodes a and b in a DAG are d-separated by a set of nodes Z if and only if 
any loop-free path from a to b satisfies one of the following:



d-Separation and conditional independence

Two nodes a and b in a DAG are d-separated by a set of nodes Z if and only if 
any loop-free path from a to b satisfies one of the following:

1.                                                  a bc Path contains a chain and c belongs to Z.



d-Separation and conditional independence

Two nodes a and b in a DAG are d-separated by a set of nodes Z if and only if 
any loop-free path from a to b satisfies one of the following:

1.                                                  

2.  

a bc

a bc

Path contains a chain and c belongs to Z.

Path contains a fork and c belongs to Z.



d-Separation and conditional independence

Two nodes a and b in a DAG are d-separated by a set of nodes Z if and only if 
any loop-free path from a to b satisfies one of the following:

1.                                                  

2.  

3.

a bc

a bc

a bc

Path contains a chain and c belongs to Z.

Path contains a fork and c belongs to Z.

Path contains a collider and c does not belong to Z. 
In addition, no descendant of c belongs to Z.



d-Separation and conditional independence

Two nodes a and b in a DAG are d-separated by a set of nodes Z if and only if 
any loop-free path from a to b satisfies one of the following:

1.                                                  

2.  

3.

Property: variables a, b are independent given Z  they are d-separated by Z⇔

a bc

a bc

a bc

Path contains a chain and c belongs to Z.

Path contains a fork and c belongs to Z.

Path contains a collider and c does not belong to Z. 
In addition, no descendant of c belongs to Z.



Example of d-separation

 and  are d-separated by  becausea b c
a

c b



Example of d-separation

 and  are d-separated by  becausea b c
1.  is sandwiched by a chain in the pathca

c b

a bc



Example of d-separation

 and  are d-separated by  becausea b c
1.  is sandwiched by a chain in the pathca

c b

“Chain”

a bc



Example of d-separation

 and  are d-separated by  because 

1.  is sandwiched by a chain in the path 

2.  is sandwiched by a chain in the path 

a b c
c

c

a

c b

a bc

bca



Example of d-separation

 and  are d-separated by  because 

1.  is sandwiched by a chain in the path 

2.  is sandwiched by a chain in the path 

a b c
c

c

a

c b

“Chain”

a bc

bca



a b

c

Non-example of d-separation

Nodes  and  are not d-separated by a b c
(i.e.,  and  are d-connected)a b
because



a b

c

Non-example of d-separation

Nodes  and  are not d-separated by a b c
(i.e.,  and  are d-connected)a b
because

a b

c



a b

c

Non-example of d-separation

Nodes  and  are not d-separated by a b c
(i.e.,  and  are d-connected)a b
because

contains a collider and  is a descendant of 
the collider node

c“Collider”

a b

c



Markov Random Fields



• Markov random fields (MRF) are represented by undirected graphs

Markov Random Fields



• Markov random fields (MRF) are represented by undirected graphs

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C

Markov Random Fields



• Markov random fields (MRF) are represented by undirected graphs

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C

Markov Random Fields

A B

C

A ⊥ B |C



Markov Random Fields
• Markov random fields (MRF) are represented by undirected graphs 

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C

A B

C A ⊥ B |C



Markov Random Fields
• Markov random fields (MRF) are represented by undirected graphs 

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C

A B

C A ⊥ B |C



Markov Random Fields
• Markov random fields (MRF) are represented by undirected graphs 

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C



Markov Random Fields
• Markov random fields (MRF) are represented by undirected graphs 

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C



Markov Random Fields
• Markov random fields (MRF) are represented by undirected graphs 

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C 

• Thus, two nodes a and b are non-adjacent if and only if they are conditionally 
independent given all other nodes

a

b



Markov Random Fields
• Markov random fields (MRF) are represented by undirected graphs 

• A and B are conditionally independent given C if and only if paths between points 
in A and B are blocked by C 

• Thus, two nodes a and b are non-adjacent if and only if they are conditionally 
independent given all other nodes

a

b



Hammersley-Clifford Theorem



Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions :ψC(xC) ≥ 0

,p(x1, …, xn) ∝ ∏
C

ψC(xC)

where  is a clique of the graph*.C

*Recall that a clique is a fully-connected subgraph of a graph



Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions :ψC(xC) ≥ 0

,p(x1, …, xn) ∝ ∏
C

ψC(xC)

where  is a clique of the graph*.C
Akin to factorising joint distributions into conditional distributions in BNs.

*Recall that a clique is a fully-connected subgraph of a graph



Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions :ψC(xC) ≥ 0

,p(x1, …, xn) ∝ ∏
C

ψC(xC)

where  is a clique of the graph*.C
Akin to factorising joint distributions into conditional distributions in BNs.

• Potential functions need not have a probabilistic interpretation

*Recall that a clique is a fully-connected subgraph of a graph



Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions :ψC(xC) ≥ 0

,p(x1, …, xn) ∝ ∏
C

ψC(xC)

where  is a clique of the graph*.C
Akin to factorising joint distributions into conditional distributions in BNs.

• Potential functions need not have a probabilistic interpretation
• Factorisation is not unique

*Recall that a clique is a fully-connected subgraph of a graph



x1 x2

x3 x4

Example illustrating the Hammersley-Clifford theorem

p(x1, x2, x3, x4)

1. Factorisation into maximal cliques



x1 x2

x3 x4

Example illustrating the Hammersley-Clifford theorem

p(x1, x2, x3, x4)

= ψ123(x1, x2, x3) ψ34(x3, x4)

1. Factorisation into maximal cliques



Example illustrating the Hammersley-Clifford theorem

x1 x2

x3 x4

2. Factorisation into pairwise cliques

p(x1, x2, x3, x4)



Example illustrating the Hammersley-Clifford theorem

x1 x2

x3 x4

= ψ12(x1, x2) ψ13(x1, x3) ψ23(x2, x3) ψ34(x3, x4)

2. Factorisation into pairwise cliques

p(x1, x2, x3, x4)



Example illustrating the Hammersley-Clifford theorem

x1 x2

x3 x4

= p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

3. Factorisation of Bayesian networks

p(x1, x2, x3, x4)



Example illustrating the Hammersley-Clifford theorem

x1 x2

x3 x4

= p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

= ψ34(x3, x4) ψ123(x1, x2, x3) ψ12(x1, x2) ψ1(x1)

3. Factorisation of Bayesian networks

p(x1, x2, x3, x4)



Markov Random Fields  Bayesian Networks≠



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

a

b c



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

a

b c b and c are not conditionally 
independent given a 



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

a

b c b and c are not conditionally 
independent given a 

a

b c



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

a

b c b and c are not conditionally 
independent given a 

a

b c

“Moralise”



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

• Not all MRFs can be represented as a BN, e.g.

a

b c b and c are not conditionally 
independent given a 

a

b c

“Moralise”



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

• Not all MRFs can be represented as a BN, e.g.

a

b c b and c are not conditionally 
independent given a 

a

b c

d

a

b c

“Moralise”



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

• Not all MRFs can be represented as a BN, e.g.

a

b c b and c are not conditionally 
independent given a 

{a, d} are conditionally independent
given {b, c} and vice-versa.

a

b c

d

a

b c

“Moralise”



Markov Random Fields  Bayesian Networks≠

• MRFs do not represent BNs without altering the graph structure, e.g.

• Not all MRFs can be represented as a BN, e.g.

a

b c b and c are not conditionally 
independent given a 

{a, d} are conditionally independent
given {b, c} and vice-versa.
Cannot happen in a DAG.

a

b c

d

a

b c

“Moralise”



Factor Graphs



Factor Graphs
• Factor graphs are alternative 

representations of BNs and MRFs



Factor Graphs
• Factor graphs are alternative 

representations of BNs and MRFs

• Makes the factorisation explicit



Factor Graphs
• Factor graphs are alternative 

representations of BNs and MRFs

• Makes the factorisation explicit

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

x1 x2

x3 x4

p(x1)

p(x2 |x1)

p(x3 |x1, x2)

p(x4 |x3)



Factor Graphs
• Factor graphs are alternative 

representations of BNs and MRFs

• Makes the factorisation explicit

• Circle nodes (  ) represent variables

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

x1 x2

x3 x4

p(x1)

p(x2 |x1)

p(x3 |x1, x2)

p(x4 |x3)



Factor Graphs
• Factor graphs are alternative 

representations of BNs and MRFs

• Makes the factorisation explicit

• Circle nodes (  ) represent variables

• Square nodes (  ) represent factors

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

x1 x2

x3 x4

p(x1)

p(x2 |x1)

p(x3 |x1, x2)

p(x4 |x3)



Factor Graphs
• Factor graphs are alternative 

representations of BNs and MRFs

• Makes the factorisation explicit

• Circle nodes (  ) represent variables

• Square nodes (  ) represent factors

• Graph is undirected and bipartite

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

x1 x2

x3 x4

p(x1)

p(x2 |x1)

p(x3 |x1, x2)

p(x4 |x3)



Factor Graphs

x1

x2

x3

x4

p(x1, x2, x3, x4) = p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

x1 x2

x3 x4

p(x1)

p(x2 |x1)

p(x3 |x1, x2)

p(x4 |x3)

• Factor graphs are alternative 
representations of BNs and MRFs 

• Makes the factorisation explicit 

• Circle nodes (  ) represent variables 

• Square nodes (  ) represent factors 

• Graph is undirected and bipartite



Factor Graphs
Factor graphs make the factorisation explicit 

 Useful for MRFs where factorisation is non-unique⇒

x1 x2

x3 x4



Factor Graphs
Factor graphs make the factorisation explicit 

 Useful for MRFs where factorisation is non-unique⇒

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

ψ1(x1)ψ12(x1, x2)ψ123(x1, x2, x3)ψ34(x3, x4) ψ12(x1, x2)ψ23(x2, x3)ψ13(x1, x3)ψ34(x3, x4) ψ123(x1, x2, x3)ψ34(x3, x4)

There are many ways of factorising into potentials:

x1 x2

x3 x4



Factor Graphs
Factor graphs make the factorisation explicit 

 Useful for MRFs where factorisation is non-unique⇒

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

ψ1(x1)ψ12(x1, x2)ψ123(x1, x2, x3)ψ34(x3, x4) ψ12(x1, x2)ψ23(x2, x3)ψ13(x1, x3)ψ34(x3, x4) ψ123(x1, x2, x3)ψ34(x3, x4)

There are many ways of factorising into potentials:

x1 x2

x3 x4



Factor Graphs
Factor graphs make the factorisation explicit 

 Useful for MRFs where factorisation is non-unique⇒

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

ψ1(x1)ψ12(x1, x2)ψ123(x1, x2, x3)ψ34(x3, x4) ψ12(x1, x2)ψ23(x2, x3)ψ13(x1, x3)ψ34(x3, x4) ψ123(x1, x2, x3)ψ34(x3, x4)

There are many ways of factorising into potentials:

x1 x2

x3 x4



Useful notations



Useful notations

• Plate notation x1

xN

y
x2



Useful notations

• Plate notation

xi y
N

x1

xN

y
x2



Useful notations

• Plate notation

• Shaded vs. unshaded nodes

xi y
N

x1

xN

y
x2

z y

ObservedLatent



Examples of Bayesian networks
• Naive Bayes classifier 

• Hidden Markov model

• Bayesian linear regression

c xi

N

z1 z2 z3 z4

x1 x2 x3 x4

yi

fi

N

w b

xi

σ

yi = fi + ϵi, ϵi ∼ 𝒩(0,σ),
fi = wxi + b .



Examples of Markov random fields
• Spatial analysis / image processing [3,4] • Error-correcting codes [5]

y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

x5

x6

ψ134

ψ256

ψ135

ψ246



References
[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New 
York: springer, 2006. 
[2] Koller, Daphne, and Nir Friedman. Probabilistic Graphical Models: 
Principles and Techniques. MIT press, 2009. 
[3] Besag, Julian. Spatial interaction and the statistical analysis of lattice 
systems. Journal of the Royal Statistical Society: Series B 
(Methodological). 1974. 
[4] Besag, Julian. On the statistical analysis of dirty pictures. Journal of the 
Royal Statistical Society: Series B (Methodological). 1986. 
[5] Gallager, Robert. Low-density parity-check codes. IRE Transactions on 
information theory. 1962.



2. Belief Propagation on PGMs



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)

Here, we will focus on computing marginal distributions using PGMs.



Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood  of observed data p(y)
2. The marginal distribution  of latent variablesp(z)
3. The conditional distribution  for any p(xi |xj) i, j ∈ V
4. The mode x* = argmaxxp(x)

Here, we will focus on computing marginal distributions using PGMs.



Example
Let  be random variables, each with  discrete states and  is the 
joint probability mass function.

X1, …, XN K p



Example
Let  be random variables, each with  discrete states and  is the 
joint probability mass function.

X1, …, XN K p

Question: What is the marginal distribution  for all ? p(Xi = xi) i = 1,…, N



Example
Let  be random variables, each with  discrete states and  is the 
joint probability mass function.

X1, …, XN K p

Question: What is the marginal distribution  for all ? p(Xi = xi) i = 1,…, N

A naive solution:

.p(Xi = xi) =
N

∑
j≠i ( ∑

xj∈{1,…,K}

p(x1, …, xN))



Example
Let  be random variables, each with  discrete states and  is the 
joint probability mass function.

X1, …, XN K p

Question: What is the marginal distribution  for all ? p(Xi = xi) i = 1,…, N

A naive solution:

.p(Xi = xi) =
N

∑
j≠i ( ∑

xj∈{1,…,K}

p(x1, …, xN))
This has computational cost  𝒪(KN)



Example
Let  be random variables, each with  discrete states and  is the 
joint probability mass function.

X1, …, XN K p

Question: What is the marginal distribution  for all ? p(Xi = xi) i = 1,…, N

A naive solution:

.p(Xi = xi) =
N

∑
j≠i ( ∑

xj∈{1,…,K}

p(x1, …, xN))
This has computational cost  𝒪(KN)



Let  and assume we can write .N = 3 p(x1, x2, x3) = p(x1, x2)p(x3)

Assuming independence



Let  and assume we can write .N = 3 p(x1, x2, x3) = p(x1, x2)p(x3)

Assuming independence

x1 x2

x3

p(x1, x2)

p(x3)



Let  and assume we can write .N = 3 p(x1, x2, x3) = p(x1, x2)p(x3)
Then, we have

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2)p(x3)

= ∑
x2∈{1,…,K}

p(x1, x2) ∑
x3∈{1,…,K}

p(x3)

=1

= ∑
x2∈{1,…,K}

p(x1, x2)

Assuming independence

x1 x2

x3

p(x1, x2)

p(x3)



Let  and assume we can write .N = 3 p(x1, x2, x3) = p(x1, x2)p(x3)
Then, we have

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2)p(x3)

= ∑
x2∈{1,…,K}

p(x1, x2) ∑
x3∈{1,…,K}

p(x3)

=1

= ∑
x2∈{1,…,K}

p(x1, x2)

Assuming independence

x1 x2

x3

p(x1, x2)

p(x3)



Let  and assume we can write .N = 3 p(x1, x2, x3) = p(x1, x2)p(x3)
Then, we have

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2)p(x3)

= ∑
x2∈{1,…,K}

p(x1, x2) ∑
x3∈{1,…,K}

p(x3)

=1

= ∑
x2∈{1,…,K}

p(x1, x2)

Assuming independence

x1 x2

x3

p(x1, x2)

p(x3)



Let  and assume we can write .N = 3 p(x1, x2, x3) = p(x1, x2)p(x3)
Then, we have

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2)p(x3)

= ∑
x2∈{1,…,K}

p(x1, x2) ∑
x3∈{1,…,K}

p(x3)

=1

= ∑
x2∈{1,…,K}

p(x1, x2)

Assuming independence

x1 x2

x3

p(x1, x2)

p(x3)



Let  and assume we can write .N = 3 p(x1, x2, x3) = p(x1, x2)p(x3)
Then, we have

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2)p(x3)

= ∑
x2∈{1,…,K}

p(x1, x2) ∑
x3∈{1,…,K}

p(x3)

=1

= ∑
x2∈{1,…,K}

p(x1, x2)

A single sum is cheaper to compute than a double sum!

Assuming independence

x1 x2

x3

p(x1, x2)

p(x3)



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)

Assuming conditional independence



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)

Assuming conditional independence

x1 x2

x3

p(x1 |x3) p(x2 |x3)

p(x3)



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)
Then,

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1 |x3)p(x2 |x3)p(x3)

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3) ∑
x2∈{1,…,K}

p(x2 |x3)

=1

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3)

Assuming conditional independence

x1 x2

x3

p(x1 |x3) p(x2 |x3)

p(x3)



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)
Then,

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1 |x3)p(x2 |x3)p(x3)

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3) ∑
x2∈{1,…,K}

p(x2 |x3)

=1

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3)

Assuming conditional independence

x1 x2

x3

p(x1 |x3) p(x2 |x3)

p(x3)



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)
Then,

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1 |x3)p(x2 |x3)p(x3)

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3) ∑
x2∈{1,…,K}

p(x2 |x3)

=1

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3)

Assuming conditional independence

x1 x2

x3

p(x1 |x3) p(x2 |x3)

p(x3)



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)
Then,

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1 |x3)p(x2 |x3)p(x3)

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3) ∑
x2∈{1,…,K}

p(x2 |x3)

=1

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3)

Assuming conditional independence

x1 x2

x3

p(x1 |x3) p(x2 |x3)

p(x3)



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)
Then,

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1 |x3)p(x2 |x3)p(x3)

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3) ∑
x2∈{1,…,K}

p(x2 |x3)

=1

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3)

Observation: Independence / conditional independence helps to reduce complexity!

Assuming conditional independence

x1 x2

x3

p(x1 |x3) p(x2 |x3)

p(x3)



Now assume we have .p(x1, x2, x3) = p(x1 |x3)p(x2 |x3)p(x3)
Then,

 

p(x1) = ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1, x2, x3)

= ∑
x2∈{1,…,K}

∑
x3∈{1,…,K}

p(x1 |x3)p(x2 |x3)p(x3)

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3) ∑
x2∈{1,…,K}

p(x2 |x3)

=1

= ∑
x3∈{1,…,K}

p(x1 |x3)p(x3)

Observation: Independence / conditional independence helps to reduce complexity!

Assuming conditional independence

 sparsity of graph≡

x1 x2

x3

p(x1 |x3) p(x2 |x3)

p(x3)



Belief propagation algorithm
• Belief propagation efficiently computes 

marginal probabilities  on trees 

• Assume that the graph is tree-structured 

• Operate on factor graphs

p(xi)
x1

x2

x3 x4

x5 x6 x7



Belief propagation algorithm
• Belief propagation efficiently computes 

marginal probabilities  on trees 

• Assume that the graph is tree-structured 

• Operate on factor graphs 
.

p(xi)

p(x) = ∏
i∈V

ψi(xi) ∏
(i, j)∈E

ψij(xi, xj)

x1

x2

x3 x4

ψ12(x1, x2)

ψ23(x2, x3) ψ24(x2, x4)

x5 x6 x7

ψ1(x1)

ψ2(x2)

ψ4(x4)
ψ3(x3)

ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7)



BP proceeds by iteratively updating:

Belief propagation algorithm
x1

x2

x3 x4

x5 x6 x7

ψ12(x1, x2)

ψ23(x2, x3) ψ24(x2, x4)

ψ1(x1)

ψ2(x2)

ψ4(x4)
ψ3(x3)

ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7)



BP proceeds by iteratively updating:

1. The “messages” between two nodes
Mj→i(xi) → ∑

xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Belief propagation algorithm
x1

x2

x3 x4

x5 x6 x7

ψ12(x1, x2)

ψ23(x2, x3) ψ24(x2, x4)

ψ1(x1)

ψ2(x2)

ψ4(x4)
ψ3(x3)

ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7)

Mj→i(xi)



BP proceeds by iteratively updating:

1. The “messages” between two nodes
Mj→i(xi) → ∑

xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

2. The “state” of each node
 p(xi) → ψi(xi)∏

j∼i

Mj→i(xi)

Belief propagation algorithm
x1

x2

x3 x4

x5 x6 x7

ψ12(x1, x2)

ψ23(x2, x3) ψ24(x2, x4)

ψ1(x1)

ψ2(x2)

ψ4(x4)
ψ3(x3)

ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7)

Mj→i(xi)

p(xi)



BP proceeds by iteratively updating:

1. The “messages” between two nodes
Mj→i(xi) → ∑

xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

2. The “state” of each node
 p(xi) → ψi(xi)∏

j∼i

Mj→i(xi)

Belief propagation algorithm
x1

x2

x3 x4

x5 x6 x7

ψ12(x1, x2)

ψ23(x2, x3) ψ24(x2, x4)

ψ1(x1)

ψ2(x2)

ψ4(x4)
ψ3(x3)

ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7) p(xi)



BP proceeds by iteratively updating:

1. The “messages” between two nodes
Mj→i(xi) → ∑

xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

2. The “state” of each node
 p(xi) → ψi(xi)∏

j∼i

Mj→i(xi)

Belief propagation algorithm
x1

x2

x3 x4

x5 x6 x7

ψ12(x1, x2)

ψ23(x2, x3) ψ24(x2, x4)

ψ1(x1)

ψ2(x2)

ψ4(x4)
ψ3(x3)

ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7)



Belief propagation algorithm
BP proceeds by iteratively updating: 
  

1. The “messages” between two nodes 
 

  
2. The “state” of each node 

  

Mj→i(xi) → ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) → ψi(xi)∏
j∼i

Mj→i(xi)

x1

x2

x3 x4

x5 x6 x7

ψ12(x1, x2)

ψ23(x2, x3) ψ24(x2, x4)

ψ1(x1)

ψ2(x2)

ψ4(x4)
ψ3(x3)

ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7)



Step 1. Message update

x1

x3 x4

x5 x6 x7

x2



Step 1. Message update

Let’s say we want to compute .p(x2)x1

x3 x4

x5 x6 x7

x2x2



Step 1. Message update

Let’s say we want to compute .p(x2)x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

x2x2



Step 1. Message update

Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

x2x2



Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

First, compute the message   :x1 → x2

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

Step 1. Message update

x2



Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

First, compute the message   :x1 → x2
M1→2(x2) = ∑

x1∈{1,…,K}

ψ12(x1, x2) ψ1(x1) ∏
k∼1,k≠2

Mk→1(x1)

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

Step 1. Message update

x2



Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

First, compute the message   :x1 → x2
M1→2(x2) = ∑

x1∈{1,…,K}

ψ12(x1, x2) ψ1(x1) ∏
k∼1,k≠2

Mk→1(x1)

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

??

Step 1. Message update

x2



Let’s say we want to compute . 
Recall the message update step: 

 

First, compute the message   : 
 

Rule: Ignore “incoming messages” to node  if there are none 

p(x2)

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

x1 → x2
M1→2(x2) = ∑

x1∈{1,…,K}

ψ12(x1, x2) ψ1(x1) ∏
k∼1,k≠2

Mk→1(x1)

i

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

Step 1. Message update



Next, compute the message   : x3 → x2
M3→2(x2) = ∑

x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3) ∏
k∼3,k≠2

Mk→3(x3)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

??

ψ23(x2, x3)

ψ3(x3)

Step 1. Message update



Next, compute the message   :x3 → x2

M3→2(x2) = ∑
x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3)M5→3(x3)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

M5→3(x3)

ψ23(x2, x3)

ψ3(x3)

ψ35(x3, x5)

ψ5(x5)

Step 1. Message update



Next, compute the message   :x3 → x2

M3→2(x2) = ∑
x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3)M5→3(x3)

M5→3(x3) = ∑
x5∈{1,…,K}

ψ35(x3, x5)ψ5(x5) ∏
k∼5,k≠3

Mk→5(x5)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

M5→3(x3)

ψ23(x2, x3)

ψ3(x3)

ψ35(x3, x5)

ψ5(x5)

Step 1. Message update



Next, compute the message   :x3 → x2

M3→2(x2) = ∑
x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3)M5→3(x3)

M5→3(x3) = ∑
x5∈{1,…,K}

ψ35(x3, x5)ψ5(x5) ∏
k∼5,k≠3

Mk→5(x5)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

M5→3(x3)

ψ23(x2, x3)

ψ3(x3)

ψ35(x3, x5)

ψ5(x5)

Step 1. Message update



Finally, compute the message   : 
 

x4 → x2
M4→2(x2) = ∑

x4∈{1,…,K}

ψ24(x2, x4) ψ4(x4) ∏
k∼4,k≠2

Mk→4(x4)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

??

ψ24(x2, x4)

ψ4(x4)

Step 1. Message update



Finally, compute the message   :x4 → x2
M4→2(x2) = ∑

x4∈{1,…,K}

ψ24(x2, x4) ψ4(x4) M6→4(x4) M7→4(x4)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

ψ24(x2, x4)

ψ4(x4)

M6→4(x4) M7→4(x4)

Step 1. Message update



Finally, compute the message   :x4 → x2
M4→2(x2) = ∑

x4∈{1,…,K}

ψ24(x2, x4) ψ4(x4) M6→4(x4) M7→4(x4)

M6→4(x4) = ∑
x6∈{1,…,K}

ψ46(x4, x6)ψ6(x6)

M7→4(x4) = ∑
x7∈{1,…,K}

ψ47(x4, x7)ψ7(x7)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

ψ24(x2, x4)

ψ4(x4)

M6→4(x4) M7→4(x4)

Step 1. Message update



Belief propagation algorithm
BP proceeds by iteratively updating: 
  

1. The “messages” between two nodes 
 

  
2. The “state” of each node 

  

Mj→i(xi) → ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) → ψi(xi)∏
j∼i

Mj→i(xi)

x1

x2

x3 x4

x5 x6 x7



Step 2. State update

Now we can compute : 

  

where 
 

 

p(x2)

p(x2) =
1
Z

ψ2(x2) × M1→2(x2) × M3→2(x2) × M4→2(x2)

Z = ∑
x2∈{1,…,K}

ψ2(x2) × M1→2(x2) × M3→2(x2) × M4→2(x2)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

ψ2(x2)



Efficient implementation
x1

x2

x3 x4

x5 x6 x7



Efficient implementation
Exploiting the tree-structure, we can 
compute all the marginals efficiently

x1

x2

x3 x4

x5 x6 x7



Step 0. Initialise x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 0. Initialise
• the states as

,p(xi) =
1
K

1

for all , andi ∈ V

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 0. Initialise
• the states as

,p(xi) =
1
K

1

for all , andi ∈ V
• the messages as

 Mj→i(xi) = 1
for all . (i, j) ∈ E

x1

x2

x3 x4

x5 x6 x7

Efficient implementation

1 1 1

1 1

1



x1

Efficient implementation
Step 1. Choose a “root” node and identify 
the corresponding “leaf” nodes 
Note: The leaves are the furthest descendants of the root

x2

x3 x4

x5 x6 x7



x1

Efficient implementation
Step 1. Choose a “root” node and identify 
the corresponding “leaf” nodes 
Note: The leaves are the furthest descendants of the root

x1

x2

x3 x4

x5 x6 x7



x1

Efficient implementation
Step 1. Choose a “root” node and identify 
the corresponding “leaf” nodes 
Note: The leaves are the furthest descendants of the root

x1

x2

x3 x4

x5 x6 x7



Step 2. Update 
• all messages propagating from the leaf 

nodes, and 
• all the states of their parent nodes

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 2. Update 
• all messages propagating from the leaf 

nodes, and 
• all the states of their parent nodes

x1

x2

x3 x4

x5 x6 x7

M5→3(x3) M6→4(x4) M7→4(x4)

Efficient implementation



Step 2. Update 
• all messages propagating from the leaf 

nodes, and 
• all the states of their parent nodes

x1

x2

x3 x4

x5 x6 x7

M5→3(x3) M6→4(x4) M7→4(x4)

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root 

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root 

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root 

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root

x1

x2

x3 x4

x5 x6 x7

M2→1(x1)

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root

x1

x2

x3 x4

x5 x6 x7

M2→1(x1)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M1→2(x2)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M1→2(x2)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M2→3(x3)
M2→4(x4)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M2→3(x3)
M2→4(x4)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M3→5(x5) M4→6(x6) M4→7(x7)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M3→5(x5) M4→6(x6) M4→7(x7)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Remarks
x1

x2

x3 x4

x5 x6 x7



Remarks
• Guaranteed convergence after a single sweep! x1

x2

x3 x4

x5 x6 x7



Remarks
• Guaranteed convergence after a single sweep!

• Linear complexity in  (not exponential!)N

x1

x2

x3 x4

x5 x6 x7



Remarks
• Guaranteed convergence after a single sweep!

• Linear complexity in  (not exponential!)N
• See example implementation in my GitHub

x1

x2

x3 x4

x5 x6 x7



If  is a tree, can we compute:G = (V, E)

Checklist



If  is a tree, can we compute:G = (V, E)

1. The marginal likelihood  of observed data p(y)

2. The marginal distribution  of latent variablesp(z)

Checklist



If  is a tree, can we compute:G = (V, E)

1. The marginal likelihood  of observed data p(y)

2. The marginal distribution  of latent variablesp(z)

Checklist



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

Checklist
x1

x2

x3 x4

x5 x6 x7

p(x2 |x3) = ?



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

Checklist
x1

x2

x4

x6 x7

ψ23(x2, x3) |x3

x3

x5

ψ35(x3, x5) |x3

ψ2(x2)

ψ5(x5)



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

Checklist
x1

x2

x4

x6 x7

ψ23(x2, x3) |x3

x5

ψ35(x3, x5) |x3

ψ2(x2)

ψ5(x5)



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

Checklist
x1

x2

x4

x6 x7

ψ23(x2, x3) |x3

Run BP on this new 
factor graph to get 
p(x2 |x3)

x5

ψ35(x3, x5) |x3

ψ2(x2)

ψ5(x5)



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

Checklist
x1

x2

x4

x6 x7

ψ23(x2, x3) |x3

Run BP on this new 
factor graph to get 
p(x2 |x3)

x5

ψ35(x3, x5) |x3

ψ2(x2)

ψ5(x5)



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any  

4. The mode 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

x* = argmaxxp(x)

Checklist



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any  

4. The mode 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

x* = argmaxxp(x)

Checklist



References
[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New 
York: springer, 2006. 

[2] Wainwright, Martin J., and Michael I. Jordan. Graphical Models, 
Exponential Families, and Variational Inference. Foundations and Trends in 
Machine Learning, 2008. 



3. Some Extensions of Belief Propagation



Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

xi

xj

ψij(xi, xj)



Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

xi

xj

ψij(xi, xj)



Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

xi

xj

ψij(xi, xj)



Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

We assume that the graph is tree-structured.

xi

xj

ψij(xi, xj)



Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

We assume that the graph is tree-structured.
What extensions can we consider?

xi

xj

ψij(xi, xj)



Extension 1. Continuous states



Extension 1. Continuous states
When states are continuous , we replace the sum by an integral:xi ∈ ℝd

Message update:

,Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)



Extension 1. Continuous states
When states are continuous , we replace the sum by an integral:xi ∈ ℝd

Message update:

,Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)



Extension 1. Continuous states
When states are continuous , we replace the sum by an integral:xi ∈ ℝd

Message update:

,Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

The integral is generally intractable, except in some cases.



Extension 1. Continuous states
When states are continuous , we replace the sum by an integral:xi ∈ ℝd

Message update:

,Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

The integral is generally intractable, except in some cases.
For e.g. Gaussian belief propagation.



Gaussian belief propagation

Properties of Gaussians:



Gaussian belief propagation

Properties of Gaussians:
1. Product of two Gaussians is Gaussian:

,𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)



Gaussian belief propagation

Properties of Gaussians:
1. Product of two Gaussians is Gaussian:

,𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)
where .c = C(A−1a + B−1b), C = (A−1 + B−1)−1



Gaussian belief propagation

Message update: 

, 

State update: 

. 

Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

Properties of Gaussians:
1. Product of two Gaussians is Gaussian:

,𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)
where .c = C(A−1a + B−1b), C = (A−1 + B−1)−1



Gaussian belief propagation

Properties of Gaussians: 
1. Product of two Gaussians is Gaussian: 

, 

where . 

𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)
c = C(A−1a + B−1b), C = (A−1 + B−1)−1

Message update: 

, 

State update: 
. 

Mj→i(xi) = ∫ℝd

ψij(xi, xj) 𝒩(xj |a, A) dxj

p(xi) = 𝒩(xi |μi, Σi)



Gaussian belief propagation

Properties of Gaussians: 
2. Integral of Gaussians is Gaussian: 

i.)   , 

ii.)  .

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x′ |a, A) dx′ = 𝒩(x |Ha, HAHT + R)

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x |a, A) dx = 𝒩(Hx′ |a, A + R)



Gaussian belief propagation

Properties of Gaussians: 
2. Integral of Gaussians is Gaussian: 

i.)   , 

ii.)  .

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x′ |a, A) dx′ = 𝒩(x |Ha, HAHT + R)

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x |a, A) dx = 𝒩(Hx′ |a, A + R)

Message update: 

, 

State update: 
. 

Mj→i(xi) = ∫ℝd

ψij(xi, xj) 𝒩(xj |a, A) dxj

p(xi) = 𝒩(xi |μi, Σi)



Gaussian belief propagation

Properties of Gaussians: 
2. Integral of Gaussians is Gaussian: 

i.)   , 

ii.)  .

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x′ |a, A) dx′ = 𝒩(x |Ha, HAHT + R)

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x |a, A) dx = 𝒩(Hx′ |a, A + R)

Message update: 
, 

State update: 
. 

Mj→i(xi) = 𝒩(xi |μj→i, Σj→i)

p(xi) = 𝒩(xi |μi, Σi)



Example: Timeseries modelling

z1 z2 z3 z4

x1 x2 x3 x4

Bayesian network representation of a 
state-space model



Example: Timeseries modelling

z1 z2 z3 z4

x1 x2 x3 x4

Bayesian network representation of a 
state-space model

Consider a linear state-space model:
zn+1 = Mzn + ϵn, ϵn ∼ 𝒩(0, Q),

xn = Hzn + ηn, ηn ∼ 𝒩(0, R) .



Example: Timeseries modelling

z1 z2 z3 z4

x1 x2 x3 x4

Bayesian network representation of a 
state-space model

Consider a linear state-space model:
zn+1 = Mzn + ϵn, ϵn ∼ 𝒩(0, Q),

xn = Hzn + ηn, ηn ∼ 𝒩(0, R) .

Equivalently,
p(zn+1 |zn) = 𝒩(zn+1 |Mzn, Q),

p(xn |zn) = 𝒩(xn |Hzn, R) .



Example: Timeseries modelling

z1 z2 z3 z4

x1 x2 x3 x4

Factor graph representation of a state-space model

p(z1) p(z2 |z1) p(z3 |z2) p(z4 |z3)

p(x1 |z1) p(x2 |z2) p(x3 |z3) p(x4 |z4)

Consider a linear state-space model: 

 

Equivalently, 

zn+1 = Mzn + ϵn, ϵn ∼ 𝒩(0, Q),
xn = Hzn + ηn, ηn ∼ 𝒩(0, R) .

p(zn+1 |zn) = 𝒩(zn+1 |Mzn, Q),
p(xn |zn) = 𝒩(xn |Hzn, R) .



Example: Timeseries modelling

z1 z2 z3 z4

x1 x2 x3 x4

p(z1) p(z2 |z1) p(z3 |z2) p(z4 |z3)

p(x1 |z1) p(x2 |z2) p(x3 |z3) p(x4 |z4)

Forward sweep  Kalman filter≡

Consider a linear state-space model: 

 

Equivalently, 

zn+1 = Mzn + ϵn, ϵn ∼ 𝒩(0, Q),
xn = Hzn + ηn, ηn ∼ 𝒩(0, R) .

p(zn+1 |zn) = 𝒩(zn+1 |Mzn, Q),
p(xn |zn) = 𝒩(xn |Hzn, R) .



Example: Timeseries modelling

• Running only the forward sweep of BP is equivalent to the Kalman filter

z1 z2 z3 z4

x1 x2 x3 x4

p(z1) p(z2 |z1) p(z3 |z2) p(z4 |z3)

p(x1 |z1) p(x2 |z2) p(x3 |z3) p(x4 |z4)

Forward sweep  Kalman filter≡

Consider a linear state-space model: 

 

Equivalently, 

zn+1 = Mzn + ϵn, ϵn ∼ 𝒩(0, Q),
xn = Hzn + ηn, ηn ∼ 𝒩(0, R) .

p(zn+1 |zn) = 𝒩(zn+1 |Mzn, Q),
p(xn |zn) = 𝒩(xn |Hzn, R) .



Example: Timeseries modelling

• Running only the forward sweep of BP is equivalent to the Kalman filter 
• Running a full BP is equivalent to the Rauch-Tung Striebel smoother

z1 z2 z3 z4

x1 x2 x3 x4

p(z1) p(z2 |z1) p(z3 |z2) p(z4 |z3)

p(x1 |z1) p(x2 |z2) p(x3 |z3) p(x4 |z4)

Forward-backward sweep  RTS smoother≡

Consider a linear state-space model: 

 

Equivalently, 

zn+1 = Mzn + ϵn, ϵn ∼ 𝒩(0, Q),
xn = Hzn + ηn, ηn ∼ 𝒩(0, R) .

p(zn+1 |zn) = 𝒩(zn+1 |Mzn, Q),
p(xn |zn) = 𝒩(xn |Hzn, R) .



Extension 2. Max-product algorithm

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)
x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)
x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7

=



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7

=



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7

=



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.
Then, we get

.max
x

p(x) = max
xroot∈{1,…,K}

1
Z ∏

j∼root

Mj→root(xroot)

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Replacing the sum in the message update by a  operator, we obtain the 
max-product algorithm:

max

,Mj→i(xi) = max
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

Iterate from leaf nodes up to the root node.
Then, we get

.max
x

p(x) = max
xroot∈{1,…,K}

1
Z ∏

j∼root

Mj→root(xroot)

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode:

,x* = argmaxxp(x)

using a procedure called back-tracking:

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode:

,x* = argmaxxp(x)

using a procedure called back-tracking:
1. At the root node, compute

.x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

2. From the root node back to the leaf nodes, compute
.x*j = argmaxxj

ψij(x*i , xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode:

,x* = argmaxxp(x)

using a procedure called back-tracking:
1. At the root node, compute

.x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

2. From the root node back to the leaf nodes, compute
.x*j = argmaxxj

ψij(x*i , xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2

x*2 = 3



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2

x*2 = 3



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2

x*3 = 2 x*4 = 2

x*2 = 3



Extension 2. Max-product algorithm
Going from the root node back to the leaf nodes, we can find the mode: 

, 

using a procedure called back-tracking: 
1. At the root node, compute 

. 

2. From the root node back to the leaf nodes, compute 
. 

x* = argmaxxp(x)

x*root = argmaxxroot

1
Z ∏

j∼root

Mj→root(xroot)

x*j = argmaxxj
ψij(x*i , xj) ψj(xj) ∏

k∼j,k≠i

Mk→j(xj), j ∼ i

x1

x2

x3 x4

x5 x6 x7

x*1 = 2

x*3 = 2 x*4 = 2

x*5 = 3 x*6 = 3 x*7 = 3

x*2 = 3



Extension 3. Polytrees and other graphs



Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree A polytree



Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree A polytree

A polytree as a MRF



Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree A polytree

A polytree as a MRF



Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree A polytree

A polytree as a MRF



Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree A polytree

A polytree as a MRF

A polytree as a factor 
graph



Extension 3. Polytrees and other graphs

A polytree is a directed tree

Note: factors are not necessarily pairwise!

A tree A polytree

A polytree as a MRF

A polytree as a factor 
graph



Extension 3. Polytrees and other graphs

On trees, the message passing updates read: 

Message update: 
, 

State update: 

. 

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)



Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

xi

xj

ψij(xi, xj)

ψj(xj)



Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

xi

xj

ψij(xi, xj)

ψj(xj)



Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

1. .    (variable-to-factor message)μxj→ψij
(xj) = ψj(xj) ∏

k∼j,k≠i

Mk→j(xj)

xi

xj

ψij(xi, xj)

ψj(xj)



Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

1. .    (variable-to-factor message)μxj→ψij
(xj) = ψj(xj) ∏

k∼j,k≠i

Mk→j(xj)

2. .    (factor-to-variable message)μψij→xi
(xi) = ∑

xj∈{1,…,K}

ψij(xi, xj) μxj→ψij
(xj)

xi

xj

ψij(xi, xj)

ψj(xj)



Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

1. .    (variable-to-factor message)μxj→ψij
(xj) = ψj(xj) ∏

k∼j,k≠i

Mk→j(xj)

2. .    (factor-to-variable message)μψij→xi
(xi) = ∑

xj∈{1,…,K}

ψij(xi, xj) μxj→ψij
(xj)

≡ Mj→i(xi)

xi

xj

ψij(xi, xj)

ψj(xj)



Extension 3. Polytrees and other graphs

Extending to polytrees:

xi

xj1

fs(xi, xj1, …, xjM)

xjM



Extension 3. Polytrees and other graphs

Extending to polytrees:

xi

xj1

fs(xi, xj1, …, xjM)

xjM



Extension 3. Polytrees and other graphs

Extending to polytrees:

1. μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

xi

xj1

fs(xi, xj1, …, xjM)

xjM



Extension 3. Polytrees and other graphs

Extending to polytrees:

1. μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

2. μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

xi

xj1

fs(xi, xj1, …, xjM)

xjM



Extension 3. Polytrees and other graphs

Extending to polytrees:

1. μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

2. μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

The state updates read:

.p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

xi

xj1

fs(xi, xj1, …, xjM)

xjM



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

• LBP is iterative and can be 
started off by setting

,μx→f(x) = 1
for all variables  and factors .x f



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

• LBP is iterative and can be 
started off by setting

,μx→f(x) = 1
for all variables  and factors .x f



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

• LBP is iterative and can be 
started off by setting

,μx→f(x) = 1
for all variables  and factors .x f



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

• LBP is iterative and can be 
started off by setting

,μx→f(x) = 1
for all variables  and factors .x f



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

• LBP is iterative and can be 
started off by setting

,μx→f(x) = 1
for all variables  and factors .x f



Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

• LBP is iterative and can be 
started off by setting

,μx→f(x) = 1
for all variables  and factors .x f

• Updates can be done in parallel 
(flooding schedule).



Iteration 1

Implementation (flooding schedule)

x1 x2

x3 x4

True marginals

Approximate marginals



Iteration 1

Implementation (flooding schedule)

x1 x2

x3 x4

True marginals

Approximate marginals



Iteration 1

Implementation (flooding schedule)

x1 x2

x3 x4

True marginals

Approximate marginals



Iteration 1

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 1

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 1

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 2

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 2

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 2

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 3

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Remarks



Remarks
• LBP does not have any convergence guarantee



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good
• On trees/polytrees, convergence is guaranteed



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good
• On trees/polytrees, convergence is guaranteed
• Some variations of LBP exists, most notably expectation propagation [4]:

• Approximates intractable distributions by a product of simpler ones
• Closeness is measured by the Kullback-Leibler (KL) divergence
• When applied to graphs, it generalises LBP [4]



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good
• On trees/polytrees, convergence is guaranteed
• Some variations of LBP exists, most notably expectation propagation [4]:

• Approximates intractable distributions by a product of simpler ones
• Closeness is measured by the Kullback-Leibler (KL) divergence
• When applied to graphs, it generalises LBP [4]

• LBP is closely related to Bethe free energy optimisation [5]



References
[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: springer, 
2006. 
[2] Wainwright, Martin J., and Michael I. Jordan. Graphical Models, Exponential Families, 
and Variational Inference. Foundations and Trends in Machine Learning, 2008. 
[3] Ortiz, Joseph, Talfan Evans, and Andrew J. Davison. A Visual Introduction to Gaussian 
Belief Propagation. 2021. (https://gaussianbp.github.io/) 
[4] Minka, Thomas P. Expectation propagation for approximate Bayesian 
inference. Proceedings of the Seventeenth conference on Uncertainty in artificial 
intelligence, 2001. 
[5] Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. Understanding belief 
propagation and its generalizations. Exploring artificial intelligence in the new millennium, 
2003.

https://gaussianbp.github.io/


4. Message Passing Neural Networks



Neural networks
Neural networks have dominated ML in the past decade. 



Neural networks
Neural networks have dominated ML in the past decade. 
They are:



Neural networks
Neural networks have dominated ML in the past decade. 
They are:
• Extremely flexible for modelling



Neural networks
Neural networks have dominated ML in the past decade. 
They are:
• Extremely flexible for modelling
• Able to process complex data structures



Neural networks
Neural networks have dominated ML in the past decade. 
They are:
• Extremely flexible for modelling
• Able to process complex data structures
• Composed of simple, parallelisable components



Neural networks
Neural networks have dominated ML in the past decade. 
They are:
• Extremely flexible for modelling
• Able to process complex data structures
• Composed of simple, parallelisable components
• Automatically differentiable



Neural networks
Neural networks have dominated ML in the past decade. 
They are:
• Extremely flexible for modelling
• Able to process complex data structures
• Composed of simple, parallelisable components
• Automatically differentiable

h0 = x
hl+1 = ReLU(Whl + b), t = 0,…, L − 1
y = Softmax(WhL + b)

x1

x2

x3

h1
1

h1
2

h1
3

h1
4

h2
1

h2
2

h2
3

h2
4

y1

y2

y3

Multilayer perceptron



A zoo of graphs in the real world



Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

A zoo of graphs in the real world

https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html


Social networks 
Image from: https://medium.com/
analytics-vidhya/social-network-

analytics-f082f4e21b16 

Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

A zoo of graphs in the real world

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html


Social networks 
Image from: https://medium.com/
analytics-vidhya/social-network-

analytics-f082f4e21b16 

Citation networks 
Image from: https://

graphsandnetworks.com/the-
cora-dataset/ 

Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

A zoo of graphs in the real world

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://graphsandnetworks.com/the-cora-dataset/
https://graphsandnetworks.com/the-cora-dataset/
https://graphsandnetworks.com/the-cora-dataset/
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html


Social networks 
Image from: https://medium.com/
analytics-vidhya/social-network-

analytics-f082f4e21b16 

Citation networks 
Image from: https://

graphsandnetworks.com/the-
cora-dataset/ 

Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

Traffic networks 
Image from: http://

proceedings.mlr.press/
v130/borovitskiy21a/
borovitskiy21a.pdf 

A zoo of graphs in the real world

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://graphsandnetworks.com/the-cora-dataset/
https://graphsandnetworks.com/the-cora-dataset/
https://graphsandnetworks.com/the-cora-dataset/
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
http://proceedings.mlr.press/v130/borovitskiy21a/borovitskiy21a.pdf
http://proceedings.mlr.press/v130/borovitskiy21a/borovitskiy21a.pdf
http://proceedings.mlr.press/v130/borovitskiy21a/borovitskiy21a.pdf
http://proceedings.mlr.press/v130/borovitskiy21a/borovitskiy21a.pdf


Example: Cora dataset

Overview of dataset: 
• 2708 ML publications 
• 5429 citation links 
• Node feature size: 1433 
• Seven classes 

Task: classify nodes according to topic



Example: Cora dataset

Using MLP:



Example: Cora dataset

Using MLP:
Do MLP classification with



Example: Cora dataset

Using MLP:
Do MLP classification with
• Node features as inputs



Example: Cora dataset

Using MLP:
Do MLP classification with
• Node features as inputs
• Seven topics as outputs



Example: Cora dataset

Using MLP:
Do MLP classification with
• Node features as inputs
• Seven topics as outputs
However,



Example: Cora dataset

Using MLP:
Do MLP classification with
• Node features as inputs
• Seven topics as outputs
However,
• This ignores relational information



Example: Cora dataset

Using MLP:
Do MLP classification with
• Node features as inputs
• Seven topics as outputs
However,
• This ignores relational information
• Data size is small



Example: Cora dataset
Using belief propagation:



Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]



Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]

ψij(xi, xj) = {
0.9, xi = xj

0.0166..., xi ≠ xj



Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]

ψij(xi, xj) = {
0.9, xi = xj

0.0166..., xi ≠ xj

• Perform LBP to compute p(xi |xobs)



Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]

ψij(xi, xj) = {
0.9, xi = xj

0.0166..., xi ≠ xj

• Perform LBP to compute p(xi |xobs)
However,



Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]

ψij(xi, xj) = {
0.9, xi = xj

0.0166..., xi ≠ xj

• Perform LBP to compute p(xi |xobs)
However,
• This does not consider node features



Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]

ψij(xi, xj) = {
0.9, xi = xj

0.0166..., xi ≠ xj

• Perform LBP to compute p(xi |xobs)
However,
• This does not consider node features
• Pairwise potential is arbitrary



Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]

ψij(xi, xj) = {
0.9, xi = xj

0.0166..., xi ≠ xj

• Perform LBP to compute p(xi |xobs)
However,
• This does not consider node features
• Pairwise potential is arbitrary

Can we combine the benefits 
of both approaches?



Convolutional neural networks

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network 

https://en.wikipedia.org/wiki/Convolutional_neural_network


Convolutional neural networks
• Incorporates inductive bias of grid-inputs

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network 

https://en.wikipedia.org/wiki/Convolutional_neural_network


Convolutional neural networks
• Incorporates inductive bias of grid-inputs
• Sparse connectivity owing to local receptive field

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network 

https://en.wikipedia.org/wiki/Convolutional_neural_network


Convolutional neural networks
• Incorporates inductive bias of grid-inputs
• Sparse connectivity owing to local receptive field
• Shared parameters

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network 

https://en.wikipedia.org/wiki/Convolutional_neural_network


Criteria for an “ideal” graph NN



Criteria for an “ideal” graph NN

1.  computational and storage efficiency𝒪( |V | + |E | )



Criteria for an “ideal” graph NN

1.  computational and storage efficiency𝒪( |V | + |E | )

2. Parameter size independent of input size



Criteria for an “ideal” graph NN

1.  computational and storage efficiency𝒪( |V | + |E | )

2. Parameter size independent of input size

3. Use local information to construct hidden features



Criteria for an “ideal” graph NN

1.  computational and storage efficiency𝒪( |V | + |E | )

2. Parameter size independent of input size

3. Use local information to construct hidden features

4. Can use edge features in addition to node features



Extending convolutions to graphs?

Can we define convolutions on graphs?



Extending convolutions to graphs?
CNNs are based on discretisation of the convolution operator

Can we define convolutions on graphs?



Extending convolutions to graphs?
CNNs are based on discretisation of the convolution operator

 

f ⋆ ψθ(x) = ∫ℝ2

f(y) ψθ(x − y)dy

≈ ∑
y∈ℤ2

f(y)ψθ(x − y)

Can we define convolutions on graphs?



Extending convolutions to graphs?
CNNs are based on discretisation of the convolution operator

 

f ⋆ ψθ(x) = ∫ℝ2

f(y) ψθ(x − y)dy

≈ ∑
y∈ℤ2

f(y)ψθ(x − y)

Can we define convolutions on graphs?



Extending convolutions to graphs?
CNNs are based on discretisation of the convolution operator

 

f ⋆ ψθ(x) = ∫ℝ2

f(y) ψθ(x − y)dy

≈ ∑
y∈ℤ2

f(y)ψθ(x − y)

Convolution applies to grids

Can we define convolutions on graphs?



Spectral graph convolution
Bruna et al. [1] introduced SpectralNet based on the following property of ⋆

,f ⋆ ψθ(x) = ℱ−1 (ℱf ⊙ ℱψθ)(x)
where  denotes the Fourier transform.ℱ



Spectral graph convolution
Bruna et al. [1] introduced SpectralNet based on the following property of ⋆

,f ⋆ ψθ(x) = ℱ−1 (ℱf ⊙ ℱψθ)(x)
where  denotes the Fourier transform.ℱ

Observation: Fourier transform can be defined on general graphs!



Spectral graph convolution
Bruna et al. [1] introduced SpectralNet based on the following property of ⋆

,f ⋆ ψθ(x) = ℱ−1 (ℱf ⊙ ℱψθ)(x)
where  denotes the Fourier transform.ℱ

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian L = D − A
2. Diagonalise  to get L L = UΛU⊤

3. Define  and ℱf := U⊤f ℱ−1 ̂f := U ̂f



Spectral graph convolution
Bruna et al. [1] introduced SpectralNet based on the following property of ⋆

,f ⋆ ψθ(x) = ℱ−1 (ℱf ⊙ ℱψθ)(x)
where  denotes the Fourier transform.ℱ

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian L = D − A
2. Diagonalise  to get L L = UΛU⊤

3. Define  and ℱf := U⊤f ℱ−1 ̂f := U ̂f



Spectral graph convolution
Bruna et al. [1] introduced SpectralNet based on the following property of ⋆

,f ⋆ ψθ(x) = ℱ−1 (ℱf ⊙ ℱψθ)(x)
where  denotes the Fourier transform.ℱ

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian L = D − A
2. Diagonalise  to get L L = UΛU⊤

3. Define  and ℱf := U⊤f ℱ−1 ̂f := U ̂f “Spectral graph convolution”



Spectral graph convolution
Bruna et al. [1] introduced SpectralNet based on the following property of ⋆

,f ⋆ ψθ(x) = ℱ−1 (ℱf ⊙ ℱψθ)(x)
where  denotes the Fourier transform.ℱ

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian L = D − A
2. Diagonalise  to get L L = UΛU⊤

3. Define  and ℱf := U⊤f ℱ−1 ̂f := U ̂f “Spectral graph convolution”

ψ̂θ = θ



Spectral graph convolution
Bruna et al. [1] introduced SpectralNet based on the following property of ⋆

,f ⋆ ψθ(x) = ℱ−1 (ℱf ⊙ ℱψθ)(x)
where  denotes the Fourier transform.ℱ

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian L = D − A
2. Diagonalise  to get L L = UΛU⊤

3. Define  and ℱf := U⊤f ℱ−1 ̂f := U ̂f “Spectral graph convolution”

ψ̂θ = θ



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Spectral graph convolution
How good is SpectralNet? 

1.  computational and storage efficiency 

Computational and storage cost for Fourier transform is  
2. Parameter size independent of input size 

Parameter size is  
3. Use local information to construct hidden features 

Diagonal features in Fourier space are non-local 
4. Can use edge features in addition to node features 

Does not use edge features

𝒪( |V | + |E | )
𝒪( |V |2 )

|V |



Graph Convolutional Networks
Alternatively, consider a “spatial” approach (Duvenaud et al. [3]):

.hl+1
vi

= σ( ∑
j∈𝒩i

hl
vj

Wl
|𝒩i|), vi ∈ V



Graph Convolutional Networks
Alternatively, consider a “spatial” approach (Duvenaud et al. [3]):

.hl+1
vi

= σ( ∑
j∈𝒩i

hl
vj

Wl
|𝒩i|), vi ∈ V

Kipf and Welling [4] introduced the Graph Convolutional Network (GCN):

.hl+1
vi

= ReLU( ∑
j∈𝒩i

hl
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V



Graph Convolutional Networks
Alternatively, consider a “spatial” approach (Duvenaud et al. [3]):

.hl+1
vi

= σ( ∑
j∈𝒩i

hl
vj

Wl
|𝒩i|), vi ∈ V

Kipf and Welling [4] introduced the Graph Convolutional Network (GCN):

.hl+1
vi

= ReLU( ∑
j∈𝒩i

hl
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V

• Works well in practice



Graph Convolutional Networks
Alternatively, consider a “spatial” approach (Duvenaud et al. [3]):

.hl+1
vi

= σ( ∑
j∈𝒩i

hl
vj

Wl
|𝒩i|), vi ∈ V

Kipf and Welling [4] introduced the Graph Convolutional Network (GCN):

.hl+1
vi

= ReLU( ∑
j∈𝒩i

hl
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V

• Works well in practice
• Can be derived from ChebNet [2], a variant of spectral graph convolution



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F



Semi-supervised learning
• Applies when the number of labelled datapoints are small 
• But relations between labelled and unlabelled data exist



Semi-supervised learning
Experiment with Cora dataset:
• Use only 140 nodes for training data
• 1000 nodes for testing

Train with cross-entropy loss over labelled data  (i.e. training data):𝒟L

.L = − ∑
(y,X)∈𝒟L

y log GCN(X)



Semi-supervised learning
Experiment with Cora dataset:
• Use only 140 nodes for training data
• 1000 nodes for testing

Train with cross-entropy loss over labelled data  (i.e. training data):𝒟L

.L = − ∑
(y,X)∈𝒟L

y log GCN(X)

Kipf and Welling [4] reports accuracy of:

• using GCN81.5 %
• using MLP55.1 %



Message Passing Neural Networks

Gilmer et. al. [5] (ICML, 2017)

• Developed to predict properties 
of molecules 

• Introduces a general framework 
for learning features on graphs 
based on message passing 

• Can handle graph data 
containing both node and edge 
features



Recall the message passing protocol in BP: 
Message update: 

, 

State update: 

. 

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) = ψi(xi)∏
j∼i

Mj→i(xi)
xi

xj

ψij(xi, xj)



Recall the message passing protocol in BP: 
Message update: 

, 

State update: 

. 

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) = ψi(xi)∏
j∼i

Mj→i(xi)
xi

xj

ψij(xi, xj)Mj→i(xi)



Message passing in MPNN [6]:
Message update:

 Ml
j→i = Ml

θ(h
l
vi
, hl

vj
, eij),

State update:

.hl+1
vi

= Ul
θ(h

l
vi
, □j∼i Ml

j→i)

Readout:

.y = Rθ({hL
vi

|vi ∈ V}) Image from: https://distill.pub/2021/gnn-intro/ 

https://distill.pub/2021/gnn-intro/


Message passing in MPNN [6]:
Message update:

 Ml
j→i = Ml

θ(h
l
vi
, hl

vj
, eij),

State update:

.hl+1
vi

= Ul
θ(h

l
vi
, □j∼i Ml

j→i)

Readout:

.y = Rθ({hL
vi

|vi ∈ V}) Image from: https://distill.pub/2021/gnn-intro/ 

https://distill.pub/2021/gnn-intro/


Message passing in MPNN [6]:
Message update:

 Ml
j→i = Ml

θ(h
l
vi
, hl

vj
, eij),

State update:

.hl+1
vi

= Ul
θ(h

l
vi
, □j∼i Ml

j→i)

Readout:

.y = Rθ({hL
vi

|vi ∈ V}) Image from: https://distill.pub/2021/gnn-intro/ 

Mθ

https://distill.pub/2021/gnn-intro/


Message passing in MPNN [6]:
Message update:

 Ml
j→i = Ml

θ(h
l
vi
, hl

vj
, eij),

State update:

.hl+1
vi

= Ul
θ(h

l
vi
, □j∼i Ml

j→i)

Readout:

.y = Rθ({hL
vi

|vi ∈ V}) Image from: https://distill.pub/2021/gnn-intro/ 

Uθ

Mθ

https://distill.pub/2021/gnn-intro/


Message passing in MPNN [6]:
Message update:

 Ml
j→i = Ml

θ(h
l
vi
, hl

vj
, eij),

State update:

.hl+1
vi

= Ul
θ(h

l
vi
, □j∼i Ml

j→i)

Readout:

.y = Rθ({hL
vi

|vi ∈ V})

Most GNN architectures can be expressed as an MPNN!

Image from: https://distill.pub/2021/gnn-intro/ 

Uθ

Mθ

https://distill.pub/2021/gnn-intro/


Example 1: GCNs as MPNN
Recall the GCN architecture:

.hl+1
vi

= ReLU( ∑
j∈𝒩i

h l
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V



Example 1: GCNs as MPNN
Recall the GCN architecture:

.hl+1
vi

= ReLU( ∑
j∈𝒩i

h l
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V

This can be expressed as an MPNN with:

•
Ml

θ(h
l
vi
, hl

vj
, eij) =

1

|𝒩i | |𝒩j |
hl

vj

•
Ul

θ(h
l
vi
, □j∼i Ml

j→i) = ReLU(( 1
|𝒩i |

hl
vi

+ ∑
j∼i

Ml
θ(h

l
vi
, hl

vj
, eij))Wl)



Example 2: MPNN in Gilmer et al. [5]
The original work of Gilmer et al. [5] used the following MPNN model

• Ml
θ(h

l
vi
, hl

vj
, eij) = MLP(eij) hl

vj

•
Ul

θ(h
l
vi
, □j∼i Ml

j→i) = GRU(hl
vi
, ∑

j∼i

Ml
j→i)

to predict 13 quantum properties of molecules in the QM9 dataset.



Example 2: MPNN in Gilmer et al. [5]
The original work of Gilmer et al. [5] used the following MPNN model

• Ml
θ(h

l
vi
, hl

vj
, eij) = MLP(eij) hl

vj

•
Ul

θ(h
l
vi
, □j∼i Ml

j→i) = GRU(hl
vi
, ∑

j∼i

Ml
j→i)

to predict 13 quantum properties of molecules in the QM9 dataset.
Model performs extremely well with 11 out of 13 properties reaching 
“chemical accuracy”.



Example 3: Transformers
MPNNs also encompass the transformer [9] model: 

•  

 

•
 

where the graph is assumed to be fully-connected. 
(See blogpost [8] for more details)

Ml
θ(h

l
vi
, hl

vj
, eij) = MultiheadAttention(hl

vi
, hl

vj
)

= {wk
ij(h

l
vi
, hl

vj
), Vk

j (hl
vj
)}K

k=1

Ul
θ(h

l
vi
, □j∼i Ml

j→i) = LN(MLP(LN(∑
j∼i

wk
ij Vk

j )))

Image from [8]



Comparison of MPNN with LBP
LBP MPNN
Bayesian. Coupling between neighbours arise 
from prior knowledge of model. Message passing 
rule follows from laws of probability. 

Frequentist. Message and state update rules 
are learned from data to obtain useful feature 
representations.

Iterative. States are updated iteratively to obtain 
better estimates of marginals. 

Deep. Uses the power of deep learning to  
extract increasingly complex features with depth.

Interpretable. Prior assumptions are usually 
quite simple, making predictions interpretable.

Flexible. Processes high-dimensional node and 
edge features easily to model complex relations 
between inputs and outputs. 



Comparison of MPNN with LBP
LBP MPNN
Bayesian. Coupling between neighbours arise 
from prior knowledge of model. Message passing 
rule follows from laws of probability. 

Frequentist. Message and state update rules 
are learned from data to obtain useful feature 
representations.

Iterative. States are updated iteratively to obtain 
better estimates of marginals. 

Deep. Uses the power of deep learning to  
extract increasingly complex features with depth.

Interpretable. Prior assumptions are usually 
quite simple, making predictions interpretable.

Flexible. Processes high-dimensional node and 
edge features easily to model complex relations 
between inputs and outputs. 

Many recent works aim to combine benefits of both approaches ([10] - [14])!



References
[1] Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. "Spectral 
networks and deep locally connected networks on graphs." ICLR, 2014. 
[2] Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional 
neural networks on graphs with fast localized spectral filtering." NeurIPS, 2016. 
[3] Duvenaud, David K., Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, 
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. "Convolutional networks 
on graphs for learning molecular fingerprints." NeurIPS, 2015. 
[4] Welling, Max, and Thomas N. Kipf. "Semi-supervised classification with graph 
convolutional networks." ICLR, 2017. 
[5] Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and 
George E. Dahl. "Neural message passing for quantum chemistry.” ICML, 2017.



References
[6] PyTorch Geometric. “Creating Message Passing Networks”: https://pytorch-
geometric.readthedocs.io/en/latest/notes/create_gnn.html  
[7] Sanchez-Lengeling, Benjamin, Emily Reif, Adam Pearce and Alexander B.  
Wiltschko, "A Gentle Introduction to Graph Neural Networks”. Distill, 2021. 
[8] Joshi, Chaitanya K. "Transformers are Graph Neural Networks", The Gradient, 
2020. 
[9] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, 
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you 
need." NeurIPS, 2017. 
[10] Ying, Zhitao, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure 
Leskovec. "GNNexplainer: Generating explanations for graph neural 
networks." NeurIPS, 2019.

https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html


References
[11] Yoon, KiJung, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, 
Richard Zemel, and Xaq Pitkow. "Inference in probabilistic graphical models by graph 
neural networks." 53rd Asilomar Conference on Signals, Systems, and Computers, 2019. 
[12] Kuck, Jonathan, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish 
Sabharwal, and Stefano Ermon. "Belief propagation neural networks." NeurIPS, 2020. 
[13] Wang, Binghui, Jinyuan Jia, and Neil Zhenqiang Gong. "Semi-Supervised Node 
Classification on Graphs: Markov Random Fields vs. Graph Neural Networks." AAAI, 
2021. 
[14] Satorras, Victor Garcia, and Max Welling. "Neural enhanced belief propagation on 
factor graphs." AISTATS, 2021. 
[15] Hua, Chenqing, Sitao Luan, Qian Zhang and Jie Fu. "Graph Neural Networks 
Intersect Probabilistic Graphical Models: A Survey." arXiv preprint 
arXiv:2206.06089, 2022.


