Message Passing Algorithms in Machine Learning

So Takao

so.takao@ucl.ac.uk

What we will cover in this lecture

We will study machine learning algorithms on graphs

Belief network

Images

Molecules

What we will cover in this lecture

We will study machine learning algorithms on graphs

Belief network

Images

Molecules

What are graphs?

A Graph is a collection (V, E) of

- V : nodes
- E : edges
such that an edge $e \in E$ can be associated with a pair of nodes $u, v \in V$.

- A graph is directed if the ordering of nodes associated to an edge "matters" i.e., $\exists \phi: E \rightarrow V \times V$ mapping an edge to an ordered tuple of nodes.

\bigcirc Node
- Edge
- A graph is directed if the ordering of nodes associated to an edge "matters" i.e., $\exists \phi: E \rightarrow V \times V$ mapping an edge to an ordered tuple of nodes.

- Edges $\phi(e)=(a, b)$ in a directed graph represented graphically as arrows
- A graph is directed if the ordering of nodes associated to an edge "matters" i.e., $\exists \phi: E \rightarrow V \times V$ mapping an edge to an ordered tuple of nodes.

- Edge

A directed graph

- Edges $\phi(e)=(a, b)$ in a directed graph represented graphically as arrows
- A graph is undirected if ordering of nodes in an edge doesn't matter
- The edges E of a graph define an adjacency relation \sim on V : For $x, y \in V$,

$$
x \sim y \quad \Leftrightarrow \quad\{(x, y)\} \cup\{(y, x)\} \subset \phi(E) .
$$

- The edges E of a graph define an adjacency relation \sim on V :

For $x, y \in V$,

$$
x \sim y \quad \Leftrightarrow \quad\{(x, y)\} \cup\{(y, x)\} \subset \phi(E) .
$$

On the graph on the left, we have e.g.

- $x_{1} \sim x_{2}$
- $x_{4} \sim x_{5}$
- $x_{1} \nsim x_{4}$
- $x_{3} \nsim x_{5}$
- The edges E of a graph define an adjacency relation \sim on V :

For $x, y \in V$,

$$
x \sim y \quad \Leftrightarrow \quad\{(x, y)\} \cup\{(y, x)\} \subset \phi(E) .
$$

On the graph on the left, we have e.g.

- $x_{1} \sim x_{2}$
- $x_{4} \sim x_{5}$
- $x_{1} \nsim x_{4}$
- $x_{3} \nsim x_{5}$
- If $x \sim y$, we say that y is a neighbour of x and vice versa
- Adjacency matrix \mathbf{A} encodes the adjacency structure of G :

$$
\mathbf{A}_{i j}= \begin{cases}1, & \text { if } x_{i} \sim x_{j} \\ 0, & \text { if } x_{i} \nsim x_{j}\end{cases}
$$

- Degree matrix \mathbf{D} encodes the degree of connectivity of each node:

$$
\mathbf{D}_{i j}= \begin{cases}\mid \text { Neighbours }\left(x_{i}\right) \mid, & \text { if } i=j, \\ 0, & \text { if } i \neq j .\end{cases}
$$

- Adjacency matrix \mathbf{A} encodes the adjacency structure of G :

$$
\mathbf{A}_{i j}= \begin{cases}1, & \text { if } x_{i} \sim x_{j} \\ 0, & \text { if } x_{i} \nsim x_{j}\end{cases}
$$

- Degree matrix \mathbf{D} encodes the degree of connectivity of each node:

$$
\mathbf{D}_{i j}= \begin{cases}\mid \text { Neighbours }\left(x_{i}\right) \mid, & \text { if } i=j, \\ 0, & \text { if } i \neq j .\end{cases}
$$

- Adjacency matrix \mathbf{A} encodes the adjacency structure of G :

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

- Degree matrix \mathbf{D} encodes the degree of connectivity of each node:

$$
\mathbf{D}_{i j}= \begin{cases}\mid \text { Neighbours }\left(x_{i}\right) \mid, & \text { if } i=j, \\ 0, & \text { if } i \neq j .\end{cases}
$$

- Adjacency matrix \mathbf{A} encodes the adjacency structure of G :

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

- Degree matrix \mathbf{D} encodes the degree of connectivity of each node:

$$
\mathbf{D}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Types of Graphs

1. Fully-connected graphs

Types of Graphs

1. Fully-connected graphs

- Undirected
- Each node is connected to every other nodes

Types of Graphs

2. Directed Acyclic Graph (DAG)

Types of Graphs

2. Directed Acyclic Graph (DAG)

- Directed
- Does not contain any directed cycles

Types of Graphs

2. Directed Acyclic Graph (DAG)

- Directed
- Does not contain any directed cycles

Types of Graphs

2. Directed Acyclic Graph (DAG)

- Directed
- Does not contain any directed cycles

Types of Graphs

3. Trees and polytrees

Types of Graphs

3. Trees and polytrees

- A tree is an undirected graph such that two nodes are connected by a unique path

Types of Graphs

3. Trees and polytrees

- A tree is an undirected graph such that two nodes are connected by a unique path

Types of Graphs

3. Trees and polytrees

- A tree is an undirected graph such that two nodes are connected by a unique path

Types of Graphs

3. Trees and polytrees

- A tree is an undirected graph such that two nodes are connected by a unique path
- A polytree is a DAG such that its underlying structure is a tree

Types of Graphs

3. Trees and polytrees

- A tree is an undirected graph such that two nodes are connected by a unique path
- A polytree is a DAG such that its underlying structure is a tree
- Designating node a as a "root", we say that node b is a parent of node c if it is a neighbouring node on the path to a

Types of Graphs

3. Trees and polytrees

- A tree is an undirected graph such that two nodes are connected by a unique path
- A polytree is a DAG such that its underlying structure is a tree
- Designating node a as a "root", we say that node b is a parent of node c if it is a neighbouring node on the path to a
- Likewise d is a child of c if c is it's parent

Types of Graphs

4. Bipartite graphs

Types of Graphs

4. Bipartite graphs

- Nodes can be divided into two "classes" (say A and B)
- Each edge connects a node in A with a node in B
- Can be either directed or undirected

Types of Graphs

5. Subgraphs

Types of Graphs

5. Subgraphs

Let $G=(V, E)$ be a graph.

Types of Graphs

5. Subgraphs

Let $G=(V, E)$ be a graph.

- A subgraph $G_{1}=\left(V_{1}, E_{1}\right)$ of G is a graph such that $V_{1} \subset V$ and $E_{1} \subset E$

Types of Graphs

5. Subgraphs

Let $G=(V, E)$ be a graph.

- A subgraph $G_{1}=\left(V_{1}, E_{1}\right)$ of G is a graph such that $V_{1} \subset V$ and $E_{1} \subset E$
- If a subgraph is fully-connected, then we call it a clique

Message passing

Algorithms defined on graphs where information is passed between neighbours

Topics covered in this lecture

1. Probabilistic graphical models (PGMs)
2. Belief propagation on PGMs
3. Some extensions of belief propagation
4. Message passing neural networks

Supplementary materials

- Github link: https://github.com/sotakao/ml-seminar-ucl
- References provided at the end of each section
- See Bishop's book [1] for necessary background in graphs and probability theory
[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: springer, 2006.

1. Probabilistic Graphical Models (PGMs)

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Questions:

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Questions:

- If x_{4} is observed, are the variables x_{2} and x_{6} independent?

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Questions:

- If x_{4} is observed, are the variables x_{2} and x_{6} independent?
i.e., $\quad p\left(x_{2}, x_{6} \mid x_{4}\right) \stackrel{?}{=} p\left(x_{2} \mid x_{4}\right) p\left(x_{6} \mid x_{4}\right)$

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Questions:

- If x_{4} is observed, are the variables x_{2} and x_{6} independent?
i.e., $\quad p\left(x_{2}, x_{6} \mid x_{4}\right) \stackrel{?}{=} p\left(x_{2} \mid x_{4}\right) p\left(x_{6} \mid x_{4}\right)$
-Which variable should we observe for x_{6} and x_{7} to be independent?

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Questions:

- If x_{4} is observed, are the variables x_{2} and x_{6} independent?
i.e., $\quad p\left(x_{2}, x_{6} \mid x_{4}\right) \stackrel{?}{=} p\left(x_{2} \mid x_{4}\right) p\left(x_{6} \mid x_{4}\right)$
- Which variable should we observe for x_{6} and x_{7} to be independent?
i.e., $\quad p\left(x_{6}, x_{7} \mid ?\right)=p\left(x_{6} \mid ?\right) p\left(x_{7} \mid\right.$? $)$

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Questions:

- If x_{4} is observed, are the variables x_{2} and x_{6} independent?
i.e., $\quad p\left(x_{2}, x_{6} \mid x_{4}\right) \stackrel{?}{=} p\left(x_{2} \mid x_{4}\right) p\left(x_{6} \mid x_{4}\right)$
- Which variable should we observe for x_{6} and x_{7} to be independent?
i.e., $\quad p\left(x_{6}, x_{7} \mid ?\right)=p\left(x_{6} \mid ?\right) p\left(x_{7} \mid\right.$? $)$

Example

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Questions:

- If x_{4} is observed, are the variables x_{2} and x_{6} independent?
i.e., $\quad p\left(x_{2}, x_{6} \mid x_{4}\right) \stackrel{?}{=} p\left(x_{2} \mid x_{4}\right) p\left(x_{6} \mid x_{4}\right)$
- Which variable should we observe for x_{6} and x_{7} to be independent?
i.e., $\quad p\left(x_{6}, x_{7} \mid\right.$? $)=p\left(x_{6} \mid\right.$?) $p\left(x_{7} \mid\right.$?)

PGMs provide elegant answers to such questions!

Bayesian Networks

Bayesian Networks

Bayesian networks (BN) visualise how a joint probability distribution factorises into conditional probability distributions

Example:
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

Bayesian Networks

Bayesian networks (BN) visualise how a
 joint probability distribution factorises into conditional probability distributions

Example:

$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Represented by a directed acyclic graph (DAG)

Bayesian Networks

Bayesian networks (BN) visualise how a
 joint probability distribution factorises into conditional probability distributions

Example:
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Represented by a directed acyclic graph (DAG)
- Nodes represent variables in the model

Bayesian Networks

Bayesian networks (BN) visualise how a joint probability distribution factorises into conditional probability distributions

Example:
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Represented by a directed acyclic graph (DAG)
- Nodes represent variables in the model
- Edges represent causal relations between variables

Bayesian Networks

Bayesian networks (BN) visualise how a joint probability distribution factorises into conditional probability distributions

Example:
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Represented by a directed acyclic graph (DAG)
- Nodes represent variables in the model
- Edges represent causal relations between variables

Bayesian Networks

Bayesian networks (BN) visualise how a joint probability distribution factorises into conditional probability distributions

Example:
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Represented by a directed acyclic graph (DAG)
- Nodes represent variables in the model
- Edges represent causal relations between variables

Bayesian Networks

Bayesian networks (BN) visualise how a joint probability distribution factorises into conditional probability distributions

Example:

$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Represented by a directed acyclic graph (DAG)
- Nodes represent variables in the model
- Edges represent causal relations between variables

Independence

Independence

Two nodes are independent if there are no paths connecting them

Independence

Two nodes are independent if there are no paths connecting them

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =p\left(x_{4}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =p\left(x_{4}\right) p\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Independence

Two nodes are independent if there are no paths connecting them

Independence

Two nodes are independent if there are no paths connecting them

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =p\left(x_{4}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =p\left(x_{4}\right) p\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

x_{4} is independent of all other nodes

d-Separation and conditional independence

d-Separation and conditional independence

Two nodes a and b in a DAG are \mathbf{d}-separated by a set of nodes Z if and only if any loop-free path from a to b satisfies one of the following:

d-Separation and conditional independence

Two nodes a and b in a DAG are \mathbf{d}-separated by a set of nodes Z if and only if any loop-free path from a to b satisfies one of the following:

1. (a) $\cdots-\cdots$ (c) $\longrightarrow \cdots$ (b) Path contains a chain and c belongs to Z.

d-Separation and conditional independence

Two nodes a and b in a DAG are \mathbf{d}-separated by a set of nodes Z if and only if any loop-free path from a to b satisfies one of the following:

1. (a) $\cdots-\cdots$ (c) $\longrightarrow \cdots$ (b) Path contains a chain and c belongs to Z.
2. (a) \cdots (c) $\longrightarrow \cdots$ (b) Path contains a fork and c belongs to Z.

d-Separation and conditional independence

Two nodes a and b in a DAG are d -separated by a set of nodes Z if and only if any loop-free path from a to b satisfies one of the following:

1. (a) $\cdots-\cdots$ (c) $\longrightarrow \cdots$ (b) Path contains a chain and c belongs to Z.
2. (a)
b Path contains a fork and c belongs to Z .

Path contains a collider and c does not belong to Z . In addition, no descendant of c belongs to Z.

d-Separation and conditional independence

Two nodes a and b in a DAG are d -separated by a set of nodes Z if and only if any loop-free path from a to b satisfies one of the following:

1. (a) $\cdots-\cdots$ (c) $\longrightarrow \cdots$ (b) Path contains a chain and c belongs to Z.
2.

Path contains a fork and c belongs to Z .

Path contains a collider and c does not belong to Z. In addition, no descendant of c belongs to Z .

Property: variables a, b are independent given $Z \Leftrightarrow$ they are d-separated by Z

Example of d-separation

a and b are d-separated by c because

Example of d-separation

a and b are d-separated by c because

1. c is sandwiched by a chain in the path

Example of d-separation

"Chain"
a and b are d-separated by c because

1. c is sandwiched by a chain in the path

Example of d-separation

a and b are d-separated by c because

1. c is sandwiched by a chain in the path

2. c is sandwiched by a chain in the path

Example of d-separation

"Chain"
a and b are d-separated by c because

1. c is sandwiched by a chain in the path

2. c is sandwiched by a chain in the path

Non-example of d-separation

Nodes a and b are not d-separated by c
(i.e., a and b are d-connected)
because

Non-example of d-separation

Nodes a and b are not d-separated by c (i.e., a and b are d-connected) because

Non-example of d-separation

Nodes a and b are not d-separated by c
(i.e., a and b are d-connected)
because

contains a collider and c is a descendant of the collider node

Markov Random Fields

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C
- Thus, two nodes a and bare non-adjacent if and only if they are conditionally independent given all other nodes

Markov Random Fields

- Markov random fields (MRF) are represented by undirected graphs

- A and B are conditionally independent given C if and only if paths between points in A and B are blocked by C
- Thus, two nodes a and bare non-adjacent if and only if they are conditionally independent given all other nodes

Hammersley-Clifford Theorem

Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions $\psi_{C}\left(\boldsymbol{x}_{C}\right) \geq 0$:

$$
p\left(x_{1}, \ldots, x_{n}\right) \propto \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

where C is a clique of the graph*.
*Recall that a clique is a fully-connected subgraph of a graph

Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions $\psi_{C}\left(\boldsymbol{x}_{C}\right) \geq 0$:

$$
p\left(x_{1}, \ldots, x_{n}\right) \propto \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

where C is a clique of the graph*.
Akin to factorising joint distributions into conditional distributions in BNs.
*Recall that a clique is a fully-connected subgraph of a graph

Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions $\psi_{C}\left(\boldsymbol{x}_{C}\right) \geq 0$:

$$
p\left(x_{1}, \ldots, x_{n}\right) \propto \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

where C is a clique of the graph*.
Akin to factorising joint distributions into conditional distributions in BNs.

- Potential functions need not have a probabilistic interpretation
*Recall that a clique is a fully-connected subgraph of a graph

Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions $\psi_{C}\left(\boldsymbol{x}_{C}\right) \geq 0$:

$$
p\left(x_{1}, \ldots, x_{n}\right) \propto \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

where C is a clique of the graph*.
Akin to factorising joint distributions into conditional distributions in BNs.

- Potential functions need not have a probabilistic interpretation
- Factorisation is not unique
*Recall that a clique is a fully-connected subgraph of a graph

Example illustrating the Hammersley-Clifford theorem

1. Factorisation into maximal cliques

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Example illustrating the Hammersley-Clifford theorem

1. Factorisation into maximal cliques

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

Example illustrating the Hammersley-Clifford theorem

2. Factorisation into pairwise cliques

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Example illustrating the Hammersley-Clifford theorem

2. Factorisation into pairwise cliques

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
= & \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

Example illustrating the Hammersley-Clifford theorem

3. Factorisation of Bayesian networks

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
= & p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
\end{aligned}
$$

Example illustrating the Hammersley-Clifford theorem

3. Factorisation of Bayesian networks

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
= & p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
= & \psi_{34}\left(x_{3}, x_{4}\right) \psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{1}\left(x_{1}\right)
\end{aligned}
$$

Markov Random Fields \neq Bayesian Networks

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

b and c are not conditionally
independent given a

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

b and c are not conditionally independent given a

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

"Moralise"
b and c are not conditionally
independent given a

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

- Not all MRFs can be represented as a BN, e.g.

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

"Moralise"
b and c are not conditionally independent given a

- Not all MRFs can be represented as a BN, e.g.

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

- Not all MRFs can be represented as a BN, e.g.

$\{a, d\}$ are conditionally independent given $\{b, c\}$ and vice-versa.

Markov Random Fields \neq Bayesian Networks

- MRFs do not represent BNs without altering the graph structure, e.g.

- Not all MRFs can be represented as a BN, e.g.

$\{a, d\}$ are conditionally independent given $\{b, c\}$ and vice-versa.
Cannot happen in a DAG.

Factor Graphs

Factor Graphs

- Factor graphs are alternative representations of BNs and MRFs

Factor Graphs

- Factor graphs are alternative representations of BNs and MRFs
- Makes the factorisation explicit

Factor Graphs

$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Factor graphs are alternative representations of BNs and MRFs
- Makes the factorisation explicit

Factor Graphs

$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Factor graphs are alternative representations of BNs and MRFs
- Makes the factorisation explicit
- Circle nodes (○) represent variables

Factor Graphs

$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Factor graphs are alternative representations of BNs and MRFs
- Makes the factorisation explicit
- Circle nodes (○) represent variables
- Square nodes (■) represent factors

Factor Graphs

$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Factor graphs are alternative representations of BNs and MRFs
- Makes the factorisation explicit
- Circle nodes (O) represent variables
- Square nodes (\square) represent factors
- Graph is undirected and bipartite

Factor Graphs

$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$

- Factor graphs are alternative representations of BNs and MRFs
- Makes the factorisation explicit
- Circle nodes (○) represent variables
- Square nodes (■) represent factors
- Graph is undirected and bipartite

Factor Graphs

Factor graphs make the factorisation explicit
\Rightarrow Useful for MRFs where factorisation is non-unique

Factor Graphs

Factor graphs make the factorisation explicit
\Rightarrow Useful for MRFs where factorisation is non-unique

There are many ways of factorising into potentials:

$\psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

$\psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

$\psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

Factor Graphs

Factor graphs make the factorisation explicit
\Rightarrow Useful for MRFs where factorisation is non-unique

There are many ways of factorising into potentials:

$\psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

Factor Graphs

Factor graphs make the factorisation explicit
\Rightarrow Useful for MRFs where factorisation is non-unique

There are many ways of factorising into potentials:

$\psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

$\psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

$\psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

Useful notations

Useful notations

- Plate notation

Useful notations

- Plate notation

Useful notations

- Plate notation

- Shaded vs. unshaded nodes

Examples of Bayesian networks

- Naive Bayes classifier

- Hidden Markov model

- Bayesian linear regression

$$
\begin{aligned}
y_{i} & =f_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}(0, \sigma), \\
f_{i} & =w x_{i}+b .
\end{aligned}
$$

Examples of Markov random fields

- Spatial analysis / image processing [3,4]
- Error-correcting codes [5]

References

[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: springer, 2006.
[2] Koller, Daphne, and Nir Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT press, 2009.
[3] Besag, Julian. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B (Methodological). 1974.
[4] Besag, Julian. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society: Series B (Methodological). 1986.
[5] Gallager, Robert. Low-density parity-check codes. IRE Transactions on information theory. 1962.

2. Belief Propagation on PGMs

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$
4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

- 1. The marginal likelihood $p(y)$ of observed data

2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$
4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood $p(y)$ of observed data

- 2. The marginal distribution $p(z)$ of latent variables

3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$
4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables

- 3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$

4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$

- 4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$
4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$
4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Here, we will focus on computing marginal distributions using PGMs.

Statistical inference with PGMs

In Bayesian statistics, we often need to compute:

- 1. The marginal likelihood $p(y)$ of observed data
- 2. The marginal distribution $p(z)$ of latent variables
- 3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$

4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Here, we will focus on computing marginal distributions using PGMs.

Example

Let X_{1}, \ldots, X_{N} be random variables, each with K discrete states and p is the joint probability mass function.

Example

Let X_{1}, \ldots, X_{N} be random variables, each with K discrete states and p is the joint probability mass function.
Question: What is the marginal distribution $p\left(X_{i}=x_{i}\right)$ for all $i=1, \ldots, N$?

Example

Let X_{1}, \ldots, X_{N} be random variables, each with K discrete states and p is the joint probability mass function.
Question: What is the marginal distribution $p\left(X_{i}=x_{i}\right)$ for all $i=1, \ldots, N$?

A naive solution:

$$
p\left(X_{i}=x_{i}\right)=\sum_{j \neq i}^{N}\left(\sum_{x_{j} \in\{1, \ldots ., K\}} p\left(x_{1}, \ldots, x_{N}\right)\right) .
$$

Example

Let X_{1}, \ldots, X_{N} be random variables, each with K discrete states and p is the joint probability mass function.
Question: What is the marginal distribution $p\left(X_{i}=x_{i}\right)$ for all $i=1, \ldots, N$?

A naive solution:

$$
p\left(X_{i}=x_{i}\right)=\sum_{j \neq i}^{N}\left(\sum_{x_{j} \in\{1, \ldots, K\}} p\left(x_{1}, \ldots, x_{N}\right)\right) .
$$

This has computational cost $\mathcal{O}\left(K^{N}\right)$

Example

Let X_{1}, \ldots, X_{N} be random variables, each with K discrete states and p is the joint probability mass function.
Question: What is the marginal distribution $p\left(X_{i}=x_{i}\right)$ for all $i=1, \ldots, N$?

A naive solution:

$$
p\left(X_{i}=x_{i}\right)=\sum_{j \neq i}^{N}\left(\sum_{x_{j} \in\{1, \ldots, K\}} p\left(x_{1}, \ldots, x_{N}\right)\right) .
$$

This has computational cost $\mathcal{O}\left(K^{N}\right)$

Assuming independence

Let $N=3$ and assume we can write $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)$.

Assuming independence

Let $N=3$ and assume we can write $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)$.

Assuming independence

Let $N=3$ and assume we can write $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)$.
Then, we have

$$
p\left(x_{1}\right)=\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right)
$$

Assuming independence

Let $N=3$ and assume we can write $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)$.
Then, we have

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)
\end{aligned}
$$

Assuming independence

Let $N=3$ and assume we can write $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)$.
Then, we have

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right) p\left(x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right) \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{3}\right)
\end{aligned}
$$

Assuming independence

Let $N=3$ and assume we can write $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)$.
Then, we have

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right) p\left(x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right) \sum_{=1}^{x_{3} \in\{1, \ldots, K\}} \underbrace{}_{=1} p\left(x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Assuming independence

Let $N=3$ and assume we can write $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3}\right)$.
Then, we have

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right) p\left(x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right) \sum_{=1}^{x_{3} \in\{1, \ldots, K\}} \underbrace{}_{=1} p\left(x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}\right)
\end{aligned}
$$

A single sum is cheaper to compute than a double sum!

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$.

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$.

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$. Then,

$$
p\left(x_{1}\right)=\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right)
$$

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$.
Then,

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)
\end{aligned}
$$

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$.
Then,

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right) \\
& =\sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{3}\right) \sum_{=1}^{x_{2} \in\{1, \ldots, K\}} p\left(x_{2} \mid x_{3}\right)
\end{aligned}
$$

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$.
Then,

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right) \\
& =\sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{3}\right) \sum_{=1}^{x_{2} \in\{1, \ldots, K\}} \underbrace{}_{x_{3} \in\{1, \ldots, K\}} p\left(x_{2} \mid x_{3}\right) \\
& =\sum_{=1} p\left(x_{1} \mid x_{3}\right) p\left(x_{3}\right)
\end{aligned}
$$

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$.
Then,

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right) \\
& =\sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{3}\right) \sum_{=1}^{\sum_{x_{2} \in\{1, \ldots, K\}} p\left(x_{2} \mid x_{3}\right)} \\
& =\sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{3}\right)
\end{aligned}
$$

Observation: Independence / conditional independence helps to reduce complexity!

Assuming conditional independence

Now assume we have $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)$.
Then,

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& =\sum_{x_{2} \in\{1, \ldots, K\}} \sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right) \\
& =\sum_{x_{3} \in\{1, \ldots, K\}} p\left(x_{1} \mid x_{3}\right) p\left(x_{3}\right) \sum_{=1}^{x_{2} \in\{1, \ldots, K\}} \underbrace{}_{x_{3} \in\{1, \ldots, K\}} p\left(x_{2} \mid x_{3}\right) \\
& =\sum_{=1} p\left(x_{1} \mid x_{3}\right) p\left(x_{3}\right)
\end{aligned}
$$

Observation: Independence / conditional independence helps to reduce complexity!

$$
\equiv \text { sparsity of graph }
$$

Belief propagation algorithm

- Belief propagation efficiently computes marginal probabilities $p\left(x_{i}\right)$ on trees
- Assume that the graph is tree-structured
- Operate on factor graphs

Belief propagation algorithm

- Belief propagation efficiently computes marginal probabilities $p\left(x_{i}\right)$ on trees
- Assume that the graph is tree-structured
- Operate on factor graphs

$$
p(\boldsymbol{x})=\prod_{i \in V} \psi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

Belief propagation algorithm

BP proceeds by iteratively updating:

Belief propagation algorithm

BP proceeds by iteratively updating:

1. The "messages" between two nodes

$$
M_{j \rightarrow i}\left(x_{i}\right)
$$

Belief propagation algorithm

BP proceeds by iteratively updating:

1. The "messages" between two nodes

$$
M_{j \rightarrow i}\left(x_{i}\right)
$$

2. The "state" of each node

$$
p\left(x_{i}\right)
$$

Belief propagation algorithm

BP proceeds by iteratively updating:

1. The "messages" between two nodes

$$
M_{j \rightarrow i}\left(x_{i}\right) \rightarrow \sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

2. The "state" of each node

$$
p\left(x_{i}\right)
$$

Belief propagation algorithm

BP proceeds by iteratively updating:

1. The "messages" between two nodes

$$
M_{j \rightarrow i}\left(x_{i}\right) \rightarrow \sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

2. The "state" of each node

$$
p\left(x_{i}\right) \rightarrow \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right)
$$

Belief propagation algorithm

-1. The "messages" between two nodes

$$
M_{j \rightarrow i}\left(x_{i}\right) \rightarrow \sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

2. The "state" of each node

Step 1. Message update

Step 1. Message update

Let's say we want to compute $p\left(x_{2}\right)$.

Step 1. Message update

Let's say we want to compute $p\left(x_{2}\right)$.

Step 1. Message update

Let's say we want to compute $p\left(x_{2}\right)$.
Recall the message update step:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

Step 1. Message update

Let's say we want to compute $p\left(x_{2}\right)$.
Recall the message update step:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

First, compute the message $x_{1} \rightarrow x_{2}$:

Step 1. Message update

Let's say we want to compute $p\left(x_{2}\right)$.
Recall the message update step:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

First, compute the message $x_{1} \rightarrow x_{2}$:

$$
M_{1 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{1} \in\{1, \ldots, K\}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{1}\left(x_{1}\right) \prod_{k \sim 1, k \neq 2} M_{k \rightarrow 1}\left(x_{1}\right)
$$

Step 1. Message update

Let's say we want to compute $p\left(x_{2}\right)$.
Recall the message update step:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

First, compute the message $x_{1} \rightarrow x_{2}$:

$$
M_{1 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{1} \in\{1, \ldots, K\}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{1}\left(x_{1}\right) \underbrace{\prod_{k \sim 1, k \neq 2} M_{k \rightarrow 1}\left(x_{1}\right)}_{? ?}
$$

Step 1. Message update

Let's say we want to compute $p\left(x_{2}\right)$.
Recall the message update step:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)
$$

First, compute the message $x_{1} \rightarrow x_{2}$:

$$
M_{1 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{1} \in\{1, \ldots, K\}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{1}\left(x_{1}\right) \prod_{k \nsim, k \neq 2}^{2} M_{k \rightarrow 1}\left(x_{1}\right)
$$

Rule: Ignore "incoming messages" to node i if there are none

Step 1. Message update

Next, compute the message $x_{3} \rightarrow x_{2}$:

$$
M_{3 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{3} \in\{1, \ldots, K\}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \underbrace{\prod_{k \sim 3, k \neq 2} M_{k \rightarrow 3}\left(x_{3}\right)}_{? ?}
$$

Step 1. Message update

Step 1. Message update

Next, compute the message $x_{3} \rightarrow x_{2}$:

$$
\begin{aligned}
& M_{3 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{3} \in\{1, \ldots, K\}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) M_{5 \rightarrow 3}\left(x_{3}\right) \\
& M_{5 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{5} \in\{1, \ldots, K\}} \psi_{35}\left(x_{3}, x_{5}\right) \psi_{5}\left(x_{5}\right) \prod_{k \sim 5, k \neq 3} M_{k \rightarrow 5}\left(x_{5}\right)
\end{aligned}
$$

Step 1. Message update

Next, compute the message $x_{3} \rightarrow x_{2}$:

$$
\begin{aligned}
& M_{3 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{3} \in\{1, \ldots, K\}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) M_{5 \rightarrow 3}\left(x_{3}\right) \\
& M_{5 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{5} \in\{1, \ldots, K\}} \psi_{35}\left(x_{3}, x_{5}\right) \psi_{5}\left(x_{5}\right) \prod_{k=5, k \neq 3} M_{k \rightarrow 5}\left(x_{5}\right)
\end{aligned}
$$

Step 1. Message update

Finally, compute the message $x_{4} \rightarrow x_{2}$:

$$
M_{4 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{4} \in\{1, \ldots, K\}} \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \underbrace{\prod_{k \sim 4, k \neq 2} M_{k \rightarrow 4}\left(x_{4}\right)}_{? ?}
$$

Step 1. Message update

Finally, compute the message $x_{4} \rightarrow x_{2}$:
$M_{4 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{4} \in\{1, \ldots, K\}} \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) M_{6 \rightarrow 4}\left(x_{4}\right) M_{7 \rightarrow 4}\left(x_{4}\right)$

Step 1. Message update

Finally, compute the message $x_{4} \rightarrow x_{2}$:

$$
\begin{aligned}
& M_{4 \rightarrow 2}\left(x_{2}\right)=\sum_{x_{4} \in\{1, \ldots, K\}} \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) M_{6 \rightarrow 4}\left(x_{4}\right) M_{7 \rightarrow 4}\left(x_{4}\right) \\
& M_{6 \rightarrow 4}\left(x_{4}\right)=\sum_{x_{6} \in\{1, \ldots, K\}} \psi_{46}\left(x_{4}, x_{6}\right) \psi_{6}\left(x_{6}\right) \\
& M_{7 \rightarrow 4}\left(x_{4}\right)=\sum_{x_{7} \in\{1, \ldots, K\}} \psi_{47}\left(x_{4}, x_{7}\right) \psi_{7}\left(x_{7}\right)
\end{aligned}
$$

Belief propagation algorithm

BP proceeds by iteratively updating:

1. The "messages" between two nodes

- 2. The "state" of each node

$$
p\left(x_{i}\right) \rightarrow \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right)
$$

Step 2. State update

Now we can compute $p\left(x_{2}\right)$:

$$
p\left(x_{2}\right)=\frac{1}{Z} \psi_{2}\left(x_{2}\right) \times M_{1 \rightarrow 2}\left(x_{2}\right) \times M_{3 \rightarrow 2}\left(x_{2}\right) \times M_{4 \rightarrow 2}\left(x_{2}\right)
$$

where
$Z=\sum_{x_{2} \in\{1, \ldots, K\}} \psi_{2}\left(x_{2}\right) \times M_{1 \rightarrow 2}\left(x_{2}\right) \times M_{3 \rightarrow 2}\left(x_{2}\right) \times M_{4 \rightarrow 2}\left(x_{2}\right)$

Efficient implementation

Efficient implementation

Exploiting the tree-structure, we can compute all the marginals efficiently

Efficient implementation

Step 0. Initialise

Efficient implementation

Step 0. Initialise

- the states as

$$
p\left(x_{i}\right)=\frac{1}{K} \mathbf{1},
$$

for all $i \in V$, and

Efficient implementation

Step 0. Initialise

- the states as

$$
p\left(x_{i}\right)=\frac{1}{K} \mathbf{1},
$$

for all $i \in V$, and

- the messages as

$$
M_{j \rightarrow i}\left(x_{i}\right)=\mathbf{1}
$$

for all $(i, j) \in E$.

Efficient implementation

Step 1. Choose a "root" node and identify the corresponding "leaf" nodes
Note: The leaves are the furthest descendants of the root

Efficient implementation

Step 1. Choose a "root" node and identify the corresponding "leaf" nodes
Note: The leaves are the furthest descendants of the root

Efficient implementation

Step 1. Choose a "root" node and identify the corresponding "leaf" nodes
Note: The leaves are the furthest descendants of the root

Efficient implementation

Step 2. Update

- all messages propagating from the leaf nodes, and
- all the states of their parent nodes

Efficient implementation

Step 2. Update

- all messages propagating from the leaf nodes, and
- all the states of their parent nodes

Efficient implementation

Step 2. Update

- all messages propagating from the leaf nodes, and
- all the states of their parent nodes

Efficient implementation

Step 3. Update the messages and states all the way up to the root

Efficient implementation

Step 3. Update the messages and states all the way up to the root

Efficient implementation

Step 3. Update the messages and states all the way up to the root

Efficient implementation

Step 3. Update the messages and states all the way up to the root

Efficient implementation

Step 3. Update the messages and states all the way up to the root

Efficient implementation

Step 3. Update the messages and states all the way up to the root

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Efficient implementation

Step 4. Do the same, starting from the root and going down to the leaves

Remarks

Remarks

- Guaranteed convergence after a single sweep!

Remarks

- Guaranteed convergence after a single sweep!
- Linear complexity in N (not exponential!)

Remarks

- Guaranteed convergence after a single sweep!
- Linear complexity in N (not exponential!)
- See example implementation in my GitHub

Checklist

If $G=(V, E)$ is a tree, can we compute:

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V$

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data

Run BP on this new factor graph to get $p\left(x_{2} \mid x_{3}\right)$

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data

Run BP on this new factor graph to get $p\left(x_{2} \mid x_{3}\right)$

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V \checkmark$
4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x})$

Checklist

If $G=(V, E)$ is a tree, can we compute:

1. The marginal likelihood $p(y)$ of observed data
2. The marginal distribution $p(z)$ of latent variables
3. The conditional distribution $p\left(x_{i} \mid x_{j}\right)$ for any $i, j \in V \checkmark$
4. The mode $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(x)$

References

[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: springer, 2006.
[2] Wainwright, Martin J., and Michael I. Jordan. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning, 2008.
3. Some Extensions of Belief Propagation

Recall the message passing protocol in BP:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

Recall the message passing protocol in BP:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

Recall the message passing protocol in BP:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

Recall the message passing protocol in BP:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

We assume that the graph is tree-structured.

Recall the message passing protocol in BP:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

We assume that the graph is tree-structured.
What extensions can we consider?

Extension 1. Continuous states

Extension 1. Continuous states

When states are continuous $x_{i} \in \mathbb{R}^{d}$, we replace the sum by an integral:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\int_{\mathbb{R}^{d}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right) \mathrm{d} x_{j},
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

Extension 1. Continuous states

When states are continuous $x_{i} \in \mathbb{R}^{d}$, we replace the sum by an integral:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\int_{\mathbb{R}^{d}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right) \mathrm{d} x_{j},
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

Extension 1. Continuous states

When states are continuous $x_{i} \in \mathbb{R}^{d}$, we replace the sum by an integral:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\int_{\mathbb{R}^{d}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right) \mathrm{d} x_{j},
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

The integral is generally intractable, except in some cases.

Extension 1. Continuous states

When states are continuous $x_{i} \in \mathbb{R}^{d}$, we replace the sum by an integral:
Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\int_{\mathbb{R}^{d}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right) \mathrm{d} x_{j},
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

The integral is generally intractable, except in some cases.
For e.g. Gaussian belief propagation.

Gaussian belief propagation

Properties of Gaussians:

Gaussian belief propagation

Properties of Gaussians:

1. Product of two Gaussians is Gaussian:

$$
\mathscr{N}(x \mid a, A) \mathscr{N}(x \mid b, B)=\mathscr{N}(x \mid c, C)
$$

Gaussian belief propagation

Properties of Gaussians:

1. Product of two Gaussians is Gaussian:

$$
\begin{aligned}
& \quad \mathcal{N}(x \mid a, A) \mathcal{N}(x \mid b, B)=\mathcal{N}(x \mid c, C) \\
& \text { where } \quad c=C\left(A^{-1} a+B^{-1} b\right), \quad C=\left(A^{-1}+B^{-1}\right)^{-1} .
\end{aligned}
$$

Gaussian belief propagation

Properties of Gaussians:

1. Product of two Gaussians is Gaussian:

$$
\begin{aligned}
& \quad \mathcal{N}(x \mid a, A) \mathscr{N}(x \mid b, B)=\mathcal{N}(x \mid c, C) \\
& \text { where } \quad c=C\left(A^{-1} a+B^{-1} b\right), \quad C=\left(A^{-1}+B^{-1}\right)^{-1} .
\end{aligned}
$$

Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\int_{\mathbb{R}^{d}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right) \mathrm{d} x_{j},
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

Gaussian belief propagation

Properties of Gaussians:

1. Product of two Gaussians is Gaussian:

$$
\begin{aligned}
& \quad \mathcal{N}(x \mid a, A) \mathscr{N}(x \mid b, B)=\mathcal{N}(x \mid c, C) \\
& \text { where } \quad c=C\left(A^{-1} a+B^{-1} b\right), \quad C=\left(A^{-1}+B^{-1}\right)^{-1} .
\end{aligned}
$$

Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\int_{\mathbb{R}^{d}} \psi_{i j}\left(x_{i}, x_{j}\right) \mathscr{N}\left(x_{j} \mid a, A\right) \mathrm{d} x_{j},
$$

State update:

$$
p\left(x_{i}\right)=\mathscr{N}\left(x_{i} \mid \mu_{i}, \Sigma_{i}\right) .
$$

Gaussian belief propagation

Properties of Gaussians:
2. Integral of Gaussians is Gaussian:
i.) $\int_{\mathbb{R}^{d}} \mathscr{N}\left(x \mid H x^{\prime}, R\right) \mathscr{N}\left(x^{\prime} \mid a, A\right) \mathrm{d} x^{\prime}=\mathscr{N}\left(x \mid H a, H A H^{T}+R\right)$,
ii.) $\int_{\mathbb{R}^{d}} \mathscr{N}\left(x \mid H x^{\prime}, R\right) \mathscr{N}(x \mid a, A) \mathrm{d} x=\mathscr{N}\left(H x^{\prime} \mid a, A+R\right)$.

Gaussian belief propagation

Properties of Gaussians:
2. Integral of Gaussians is Gaussian:
i.) $\int_{\mathbb{R}^{d}} \mathscr{N}\left(x \mid H x^{\prime}, R\right) \mathscr{N}\left(x^{\prime} \mid a, A\right) \mathrm{d} x^{\prime}=\mathscr{N}\left(x \mid H a, H A H^{T}+R\right)$,
ii.) $\int_{\mathbb{R}^{d}} \mathscr{N}\left(x \mid H x^{\prime}, R\right) \mathscr{N}(x \mid a, A) \mathrm{d} x=\mathscr{N}\left(H x^{\prime} \mid a, A+R\right)$.

Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\int_{\mathbb{R}^{d}} \psi_{i j}\left(x_{i}, x_{j}\right) \mathcal{N}\left(x_{j} \mid a, A\right) \mathrm{d} x_{j}
$$

State update:

$$
p\left(x_{i}\right)=\mathscr{N}\left(x_{i} \mid \mu_{i}, \Sigma_{i}\right) .
$$

Gaussian belief propagation

Properties of Gaussians:
2. Integral of Gaussians is Gaussian:
i.) $\int_{\mathbb{R}^{d}} \mathscr{N}\left(x \mid H x^{\prime}, R\right) \mathscr{N}\left(x^{\prime} \mid a, A\right) \mathrm{d} x^{\prime}=\mathscr{N}\left(x \mid H a, H A H^{T}+R\right)$,
ii.) $\int_{\mathbb{R}^{d}} \mathscr{N}\left(x \mid H x^{\prime}, R\right) \mathscr{N}(x \mid a, A) \mathrm{d} x=\mathscr{N}\left(H x^{\prime} \mid a, A+R\right)$.

Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\mathcal{N}\left(x_{i} \mid \mu_{j \rightarrow i}, \Sigma_{j \rightarrow i}\right),
$$

State update:

$$
p\left(x_{i}\right)=\mathscr{N}\left(x_{i} \mid \mu_{i}, \Sigma_{i}\right) .
$$

Example: Timeseries modelling

Example: Timeseries modelling

Consider a linear state-space model:

$$
\begin{aligned}
z_{n+1} & =M z_{n}+\epsilon_{n}, & \epsilon_{n} \sim \mathcal{N}(0, Q), \\
x_{n} & =H z_{n}+\eta_{n}, & \eta_{n} \sim \mathcal{N}(0, R) .
\end{aligned}
$$

Example: Timeseries modelling

Consider a linear state-space model:

$$
\begin{aligned}
z_{n+1} & =M z_{n}+\epsilon_{n}, & & \epsilon_{n} \sim \mathcal{N}(0, Q), \\
x_{n} & =H z_{n}+\eta_{n}, & & \eta_{n} \sim \mathcal{N}(0, R) .
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
p\left(z_{n+1} \mid z_{n}\right) & =\mathcal{N}\left(z_{n+1} \mid M z_{n}, Q\right) \\
p\left(x_{n} \mid z_{n}\right) & =\mathcal{N}\left(x_{n} \mid H z_{n}, R\right)
\end{aligned}
$$

Bayesian network representation of a state-space model

Example: Timeseries modelling

Consider a linear state-space model:

$$
\begin{aligned}
z_{n+1} & =M z_{n}+\epsilon_{n}, & & \epsilon_{n} \sim \mathcal{N}(0, Q), \\
x_{n} & =H z_{n}+\eta_{n}, & & \eta_{n} \sim \mathcal{N}(0, R) .
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
p\left(z_{n+1} \mid z_{n}\right) & =\mathcal{N}\left(z_{n+1} \mid M z_{n}, Q\right) \\
p\left(x_{n} \mid z_{n}\right) & =\mathcal{N}\left(x_{n} \mid H z_{n}, R\right)
\end{aligned}
$$

Factor graph representation of a state-space model

Example: Timeseries modelling

Consider a linear state-space model:

$$
\begin{array}{rlrl}
z_{n+1} & =M z_{n}+\epsilon_{n}, & & \epsilon_{n} \sim \mathcal{N}(0, Q) \\
x_{n} & =H z_{n}+\eta_{n}, & \eta_{n} \sim \mathcal{N}(0, R) .
\end{array}
$$

Equivalently,

$$
\begin{aligned}
p\left(z_{n+1} \mid z_{n}\right) & =\mathcal{N}\left(z_{n+1} \mid M z_{n}, Q\right) \\
p\left(x_{n} \mid z_{n}\right) & =\mathcal{N}\left(x_{n} \mid H z_{n}, R\right)
\end{aligned}
$$

Forward sweep \equiv Kalman filter

Example: Timeseries modelling

Consider a linear state-space model:

$$
\begin{aligned}
z_{n+1} & =M z_{n}+\epsilon_{n}, & & \epsilon_{n} \sim \mathcal{N}(0, Q), \\
x_{n} & =H z_{n}+\eta_{n}, & & \eta_{n} \sim \mathcal{N}(0, R) .
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
p\left(z_{n+1} \mid z_{n}\right) & =\mathcal{N}\left(z_{n+1} \mid M z_{n}, Q\right) \\
p\left(x_{n} \mid z_{n}\right) & =\mathcal{N}\left(x_{n} \mid H z_{n}, R\right)
\end{aligned}
$$

Forward sweep \equiv Kalman filter

- Running only the forward sweep of BP is equivalent to the Kalman filter

Example: Timeseries modelling

Consider a linear state-space model:

$$
\begin{array}{rlrl}
z_{n+1} & =M z_{n}+\epsilon_{n}, & & \epsilon_{n} \sim \mathcal{N}(0, Q) \\
x_{n} & =H z_{n}+\eta_{n}, & \eta_{n} \sim \mathcal{N}(0, R) .
\end{array}
$$

Equivalently,

$$
\begin{aligned}
p\left(z_{n+1} \mid z_{n}\right) & =\mathcal{N}\left(z_{n+1} \mid M z_{n}, Q\right) \\
p\left(x_{n} \mid z_{n}\right) & =\mathcal{N}\left(x_{n} \mid H z_{n}, R\right)
\end{aligned}
$$

Forward-backward sweep \equiv RTS smoother

- Running only the forward sweep of BP is equivalent to the Kalman filter
- Running a full BP is equivalent to the Rauch-Tung Striebel smoother

Extension 2. Max-product algorithm

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product allgorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.
-

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product allgorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.
P

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.
Then, we get

$$
\max _{\boldsymbol{x}} p(\boldsymbol{x})=\max _{x_{\mathrm{root}} \in\{1, \ldots, K\}} \frac{1}{Z} \prod_{j \sim \mathrm{root}} M_{j \rightarrow \mathrm{root}}\left(x_{\mathrm{root}}\right)
$$

Extension 2. Max-product algorithm

Replacing the sum in the message update by a max operator, we obtain the max-product algorithm:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\max _{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Iterate from leaf nodes up to the root node.
Then, we get

$$
\max _{\boldsymbol{x}} p(\boldsymbol{x})=\max _{x_{\mathrm{root}} \in\{1, \ldots, K\}} \frac{1}{Z} \prod_{j \sim \mathrm{root}} M_{j \rightarrow \mathrm{root}}\left(x_{\mathrm{root}}\right)
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{r o o t}^{*}=\operatorname{argmax}_{x_{\mathrm{root}}} \frac{1}{Z} \prod_{j \sim \operatorname{root}} M_{j \rightarrow \mathrm{root}}\left(x_{\mathrm{root}}\right)
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \mathrm{root}}\left(x_{\text {root }}\right) .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 2. Max-product algorithm

Going from the root node back to the leaf nodes, we can find the mode:

$$
\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(\boldsymbol{x}),
$$

using a procedure called back-tracking:

1. At the root node, compute

$$
x_{\text {root }}^{*}=\operatorname{argmax}_{x_{\text {root }}} \frac{1}{Z} \prod_{j \sim \text { root }} M_{j \rightarrow \text { root }}\left(x_{\text {root }}\right) .
$$

2. From the root node back to the leaf nodes, compute

$$
x_{j}^{*}=\operatorname{argmax}_{x_{j}} \psi_{i j}\left(x_{i}^{*}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right), \quad j \sim i .
$$

Extension 3. Polytrees and other graphs

Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree

A polytree

Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree

A polytree

A polytree as a MRF

Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree

A polytree

A polytree as a MRF

Extension 3. Polytrees and other graphs

A polytree is a directed tree

A tree

A polytree

A polytree as a MRF

Extension 3. Polytrees and other graphs

A polytree is a directed tree

A polytree as a MRF

A polytree as a factor graph

Extension 3. Polytrees and other graphs

A polytree is a directed tree

Note: factors are not necessarily pairwise!

A polytree as a MRF

A polytree as a factor graph

Extension 3. Polytrees and other graphs

On trees, the message passing updates read:

Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right) .
$$

Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

1. $\mu_{x_{j} \rightarrow \psi_{i j}}\left(x_{j}\right)=\psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)$. (variable-to-factor message)

Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

1. $\mu_{x_{j} \rightarrow \psi_{i j}}\left(x_{j}\right)=\psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)$. (variable-to-factor message)
2. $\mu_{\psi_{i j} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \mu_{x_{j} \rightarrow \psi_{i j}}\left(x_{j}\right)$. (factor-to-variable message)

Extension 3. Polytrees and other graphs

First, break down the message update step into two sub-steps:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

1. $\mu_{x_{j} \rightarrow \psi_{i j}}\left(x_{j}\right)=\psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right)$. (variable-to-factor message)
2. $\underbrace{\mu_{\psi_{i j} \rightarrow x_{i}}\left(x_{i}\right)}_{\equiv M_{j \rightarrow i}\left(x_{i}\right)}=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \mu_{x_{j} \rightarrow \psi_{i j}}\left(x_{j}\right)$. (factor-to-variable message)

Extension 3. Polytrees and other graphs

Extending to polytrees:

Extension 3. Polytrees and other graphs

Extending to polytrees:

Extension 3. Polytrees and other graphs

Extending to polytrees:

$$
\text { 1. } \mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{i} \rightarrow x_{j}}\left(x_{j}\right)
$$

Extension 3. Polytrees and other graphs

Extending to polytrees:

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

Extension 3. Polytrees and other graphs

Extending to polytrees:

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

The state updates read:

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops. This is called Loopy Belief Propagation (LBP).

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops.
This is called Loopy Belief Propagation (LBP).

Message update (same as before):

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

State update (same as before):

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops.
This is called Loopy Belief Propagation (LBP).

Message update (same as before):

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

- LBP is iterative and can be started off by setting

$$
\mu_{x \rightarrow f}(x)=1
$$

for all variables x and factors f.

State update (same as before):

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops.
This is called Loopy Belief Propagation (LBP).

Message update (same as before):

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

- LBP is iterative and can be started off by setting

$$
\mu_{x \rightarrow f}(x)=1,
$$

for all variables x and factors f.

State update (same as before):

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops.
This is called Loopy Belief Propagation (LBP).

Message update (same as before):

$$
\text { 1. } \mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)
$$

2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

- LBP is iterative and can be started off by setting

$$
\mu_{x \rightarrow f}(x)=1,
$$

for all variables x and factors f.

State update (same as before):

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops.
This is called Loopy Belief Propagation (LBP).

Message update (same as before):

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

- LBP is iterative and can be started off by setting

$$
\mu_{x \rightarrow f}(x)=1,
$$

for all variables x and factors f.

State update (same as before):

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops.
This is called Loopy Belief Propagation (LBP).

Message update (same as before):

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

- LBP is iterative and can be started off by setting

$$
\mu_{x \rightarrow f}(x)=1
$$

for all variables x and factors f.

State update (same as before):

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

Extension 3. Polytrees and other graphs

We can apply the same update rules to more general graphs with loops.
This is called Loopy Belief Propagation (LBP).

Message update (same as before):

1. $\mu_{x_{j} \rightarrow f_{s}}\left(x_{j}\right)=\prod_{l \in \operatorname{ne}\left(x_{j}\right) \backslash s} \mu_{f_{l} \rightarrow x_{j}}\left(x_{j}\right)$
2. $\mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{j_{1}}, \ldots, x_{j_{M}}} f_{s}\left(x_{i}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \prod_{k=1}^{M} \mu_{x_{j_{k}} \rightarrow f_{s}}\left(x_{j_{k}}\right)$

State update (same as before):

$$
p\left(x_{i}\right)=\prod_{s \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{s} \rightarrow x_{i}}\left(x_{i}\right)
$$

- LBP is iterative and can be started off by setting

$$
\mu_{x \rightarrow f}(x)=1
$$

for all variables x and factors f.

- Updates can be done in parallel (flooding schedule).

Implementation (flooding schedule)

Iteration 1

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 1

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 1

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 1

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 1

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 1

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 2

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 2

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 2

- True marginals

Approximate marginals

Implementation (flooding schedule)

Iteration 3

- True marginals

Approximate marginals

Remarks

Remarks

- LBP does not have any convergence guarantee

Remarks

- LBP does not have any convergence guarantee
- But when it converges, the results are usually good

Remarks

- LBP does not have any convergence guarantee
- But when it converges, the results are usually good
- On trees/polytrees, convergence is guaranteed

Remarks

- LBP does not have any convergence guarantee
- But when it converges, the results are usually good
- On trees/polytrees, convergence is guaranteed
- Some variations of LBP exists, most notably expectation propagation [4]:
- Approximates intractable distributions by a product of simpler ones
- Closeness is measured by the Kullback-Leibler (KL) divergence
- When applied to graphs, it generalises LBP [4]

Remarks

- LBP does not have any convergence guarantee
- But when it converges, the results are usually good
- On trees/polytrees, convergence is guaranteed
- Some variations of LBP exists, most notably expectation propagation [4]:
- Approximates intractable distributions by a product of simpler ones
- Closeness is measured by the Kullback-Leibler (KL) divergence
- When applied to graphs, it generalises LBP [4]
- LBP is closely related to Bethe free energy optimisation [5]

References

[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: springer, 2006.
[2] Wainwright, Martin J., and Michael I. Jordan. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning, 2008.
[3] Ortiz, Joseph, Talfan Evans, and Andrew J. Davison. A Visual Introduction to Gaussian Belief Propagation. 2021. (https://gaussianbp.github.io/)
[4] Minka, Thomas P. Expectation propagation for approximate Bayesian inference. Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, 2001.
[5] Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. Understanding belief propagation and its generalizations. Exploring artificial intelligence in the new millennium, 2003.

4. Message Passing Neural Networks

Neural networks

Neural networks have dominated ML in the past decade.

Neural networks

Neural networks have dominated ML in the past decade. They are:

Neural networks

Neural networks have dominated ML in the past decade.
They are:

- Extremely flexible for modelling

Neural networks

Neural networks have dominated ML in the past decade.
They are:

- Extremely flexible for modelling
- Able to process complex data structures

Neural networks

Neural networks have dominated ML in the past decade.
They are:

- Extremely flexible for modelling
- Able to process complex data structures
- Composed of simple, parallelisable components

Neural networks

Neural networks have dominated ML in the past decade.
They are:

- Extremely flexible for modelling
- Able to process complex data structures
- Composed of simple, parallelisable components
- Automatically differentiable

Neural networks

Neural networks have dominated ML in the past decade.
They are:

- Extremely flexible for modelling
- Able to process complex data structures
- Composed of simple, parallelisable components
- Automatically differentiable

$$
\begin{aligned}
& h^{0}=x \\
& h^{l+1}=\operatorname{ReLU}\left(W h^{l}+b\right), \quad t=0, \ldots, L-1 \\
& y=\operatorname{Softmax}\left(W h^{L}+b\right)
\end{aligned}
$$

Multilayer perceptron

A zoo of graphs in the real world

A zoo of graphs in the real world

Molecules as graphs
Image from: https://www.oreilly.com/
library/view/deep-learning-for/
9781492039822/ch04.html

A zoo of graphs in the real world

Molecules as graphs
Image from: https://www.oreilly.com/ library/view/deep-learning-for/ 9781492039822/ch04.html

Social networks
Image from: https://medium.com/ analytics-vidhya/social-network-analytics-f082f4e21b16

A zoo of graphs in the real world

Molecules as graphs Image from: https://www.oreilly.com/ library/view/deep-learning-for/ 9781492039822/ch04.html

Social networks
Image from: https://medium.com/ analytics-vidhya/social-network-analytics-f082f4e21b16

Citation networks Image from: https:// graphsandnetworks.com/the-cora-dataset/

A zoo of graphs in the real world

Molecules as graphs Image from: https://www.oreilly.com/ library/view/deep-learning-for/ 9781492039822/ch04.html

Social networks
Image from: https://medium.com/ analytics-vidhya/social-network-analytics-f082f4e21b16

Citation networks
Image from: https:// graphsandnetworks.com/the-cora-dataset/

Traffic networks Image from: http:// proceedings.mlr.press/ v130/borovitskiy21a/ borovitskiy21a.pdf

Example: Cora dataset

Overview of dataset:

- 2708 ML publications
- 5429 citation links
- Node feature size: 1433
- Seven classes

Task: classify nodes according to topic

Example: Cora dataset

Using MLP:

Example: Cora dataset

Using MLP:
Do MLP classification with

Example: Cora dataset

Using MLP:
Do MLP classification with

- Node features as inputs

Example: Cora dataset

Using MLP:
Do MLP classification with

- Node features as inputs
- Seven topics as outputs

Example: Cora dataset

Using MLP:
Do MLP classification with

- Node features as inputs
- Seven topics as outputs

However,

Example: Cora dataset

Using MLP:

Do MLP classification with

- Node features as inputs
- Seven topics as outputs

However,

- This ignores relational information

Example: Cora dataset

Using MLP:

Do MLP classification with

- Node features as inputs
- Seven topics as outputs

However,

- This ignores relational information
- Data size is small

Example: Cora dataset

Using belief propagation:

Example: Cora dataset

Using belief propagation:

- Create a MRF with pairwise potential [12]

Example: Cora dataset

Using belief propagation:

- Create a MRF with pairwise potential [12]

$$
\psi_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0.9, & x_{i}=x_{j} \\ 0.0166 \ldots, & x_{i} \neq x_{j}\end{cases}
$$

Example: Cora dataset

Using belief propagation:

- Create a MRF with pairwise potential [12]

$$
\psi_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0.9, & x_{i}=x_{j} \\ 0.0166 \ldots, & x_{i} \neq x_{j}\end{cases}
$$

- Perform LBP to compute $p\left(x_{i} \mid x^{o b s}\right)$

Example: Cora dataset

Using belief propagation:

- Create a MRF with pairwise potential [12]

$$
\psi_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0.9, & x_{i}=x_{j} \\ 0.0166 \ldots, & x_{i} \neq x_{j}\end{cases}
$$

- Perform LBP to compute $p\left(x_{i} \mid x^{o b s}\right)$

However,

Example: Cora dataset

Using belief propagation:

- Create a MRF with pairwise potential [12]

$$
\psi_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0.9, & x_{i}=x_{j} \\ 0.0166 \ldots, & x_{i} \neq x_{j}\end{cases}
$$

- Perform LBP to compute $p\left(x_{i} \mid x^{o b s}\right)$ However,
- This does not consider node features

Example: Cora dataset

Using belief propagation:

- Create a MRF with pairwise potential [12]

$$
\psi_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0.9, & x_{i}=x_{j} \\ 0.0166 \ldots, & x_{i} \neq x_{j}\end{cases}
$$

- Perform LBP to compute $p\left(x_{i} \mid x^{o b s}\right)$

However,

- This does not consider node features
- Pairwise potential is arbitrary

Example: Cora dataset

Using belief propagation:

- Create a MRF with pairwise potential [12]

Can we combine the benefits of both approaches?

$$
\psi_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0.9, & x_{i}=x_{j} \\ 0.0166 \ldots, & x_{i} \neq x_{j}\end{cases}
$$

- Perform LBP to compute $p\left(x_{i} \mid x^{o b s}\right)$ However,
- This does not consider node features
- Pairwise potential is arbitrary

Convolutional neural networks

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional neural networks

- Incorporates inductive bias of grid-inputs

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional neural networks

- Incorporates inductive bias of grid-inputs
- Sparse connectivity owing to local receptive field

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional neural networks

- Incorporates inductive bias of grid-inputs
- Sparse connectivity owing to local receptive field
- Shared parameters

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network

Criteria for an "ideal" graph NN

Criteria for an "ideal" graph NN

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

Criteria for an "ideal" graph NN

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency
2. Parameter size independent of input size

Criteria for an "ideal" graph NN

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency
2. Parameter size independent of input size
3. Use local information to construct hidden features

Criteria for an "ideal" graph NN

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency
2. Parameter size independent of input size
3. Use local information to construct hidden features
4. Can use edge features in addition to node features

Extending convolutions to graphs?

Can we define convolutions on graphs?

Extending convolutions to graphs?

CNNs are based on discretisation of the convolution operator

Can we define convolutions on graphs?

Extending convolutions to graphs?

CNNs are based on discretisation of the convolution operator

$$
f \star \psi_{\theta}(x)=\int_{\mathbb{R}^{2}} f(y) \psi_{\theta}(x-y) \mathrm{d} y
$$

Can we define convolutions on graphs?

Extending convolutions to graphs?

CNNs are based on discretisation of the convolution operator

$$
\begin{aligned}
f \star \psi_{\theta}(x) & =\int_{\mathbb{R}^{2}} f(y) \psi_{\theta}(x-y) \mathrm{d} y \\
& \approx \sum_{y \in \mathbb{Z}^{2}} f(y) \psi_{\theta}(x-y)
\end{aligned}
$$

Can we define convolutions on graphs?

Extending convolutions to graphs?

CNNs are based on discretisation of the convolution operator

$$
\begin{aligned}
& f \star \psi_{\theta}(x)=\int_{\mathbb{R}^{2}} f(y) \psi_{\theta}(x-y) \mathrm{d} y \\
& \approx \sum_{y \in \mathbb{Z}^{2}} f(y) \psi_{\theta}(x-y)
\end{aligned}
$$

Convolution applies to grids

Can we define convolutions on graphs?

Spectral graph convolution

Bruna et al. [1] introduced SpectralNet based on the following property of \star

$$
f \star \psi_{\theta}(x)=\mathscr{F}^{-1}\left(\mathscr{F} f \odot \mathscr{F} \psi_{\theta}\right)(x),
$$

where \mathscr{F} denotes the Fourier transform.

Spectral graph convolution

Bruna et al. [1] introduced SpectralNet based on the following property of \star

$$
f \star \psi_{\theta}(x)=\mathscr{F}^{-1}\left(\mathscr{F} f \odot \mathscr{F} \psi_{\theta}\right)(x),
$$

where \mathscr{F} denotes the Fourier transform.

Observation: Fourier transform can be defined on general graphs!

Spectral graph convolution

Bruna et al. [1] introduced SpectralNet based on the following property of \star

$$
f \star \psi_{\theta}(x)=\mathscr{F}^{-1}\left(\mathscr{F} f \odot \mathscr{F} \psi_{\theta}\right)(x),
$$

where \mathscr{F} denotes the Fourier transform.

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian $\mathbf{L}=\mathbf{D}-\mathbf{A}$
2. Diagonalise \mathbf{L} to get $\mathbf{L}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
3. Define $\mathscr{F} \mathbf{f}:=\mathbf{U}^{\top} \mathbf{f}$ and $\mathscr{F}^{-1} \hat{\mathbf{f}}:=\mathbf{U} \hat{\mathbf{f}}$

Spectral graph convolution

Bruna et al. [1] introduced SpectralNet based on the following property of \star

$$
f \star \psi_{\theta}(x)=\mathscr{F}^{-1}\left(\mathscr{F} f \odot \mathscr{F} \psi_{\theta}\right)(x),
$$

where \mathscr{F} denotes the Fourier transform.

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian $\mathbf{L}=\mathbf{D}-\mathbf{A}$
2. Diagonalise \mathbf{L} to get $\mathbf{L}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
3. Define $\mathscr{F} \mathbf{f}:=\mathbf{U}^{\top} \mathbf{f}$ and $\mathscr{F}^{-1} \hat{\mathbf{f}}:=\mathbf{U} \hat{\mathbf{f}}$

Spectral graph convolution

Bruna et al. [1] introduced SpectralNet based on the following property of \star

$$
f \star \psi_{\theta}(x)=\mathscr{F}^{-1}\left(\mathscr{F} f \odot \mathscr{F} \psi_{\theta}\right)(x),
$$

where \mathscr{F} denotes the Fourier transform.

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian $\mathbf{L}=\mathbf{D}-\mathbf{A}$
2. Diagonalise \mathbf{L} to get $\mathbf{L}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
3. Define $\mathscr{F} \mathbf{f}:=\mathbf{U}^{\top} \mathbf{f}$ and $\mathscr{F}^{-1} \hat{\mathbf{f}}:=\mathbf{U} \hat{\mathbf{f}}$

Spectral graph convolution

Bruna et al. [1] introduced SpectralNet based on the following property of \star

$$
f \star \psi_{\theta}(x)=\mathscr{F}^{-1}\left(\mathscr{F} f \odot \mathscr{F} \psi_{\theta}\right)(x),
$$

where \mathscr{F} denotes the Fourier transform. $\hat{\psi}_{\theta}$

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian $\mathbf{L}=\mathbf{D}-\mathbf{A}$
2. Diagonalise \mathbf{L} to get $\mathbf{L}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
3. Define $\mathscr{F} \mathbf{f}:=\mathbf{U}^{\top} \mathbf{f}$ and $\mathscr{F}^{-1} \hat{\mathbf{f}}:=\mathbf{U} \hat{\mathbf{f}}$

Spectral graph convolution

Bruna et al. [1] introduced SpectralNet based on the following property of \star

$$
f \star \psi_{\theta}(x)=\mathscr{F}^{-1}\left(\mathscr{F} f \odot \mathscr{F} \psi_{\theta}\right)(x),
$$

where \mathscr{F} denotes the Fourier transform.

$$
\hat{\psi}_{\theta}=\boldsymbol{\theta}
$$

Observation: Fourier transform can be defined on general graphs!

1. Construct the graph Laplacian $\mathbf{L}=\mathbf{D}-\mathbf{A}$
2. Diagonalise \mathbf{L} to get $\mathbf{L}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
3. Define $\mathscr{F} \mathbf{f}:=\mathbf{U}^{\top} \mathbf{f}$ and $\mathscr{F}^{-1} \hat{\mathbf{f}}:=\mathbf{U} \hat{\mathbf{f}}$

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$
2. Parameter size independent of input size

Parameter size is $|V|$
3. Use local information to construct hidden features

Diagonal features in Fourier space are non-local
4. Can use edge features in addition to node features

Does not use edge features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

Diagonal features in Fourier space are non-local
4. Can use edge features in addition to node features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

Diagonal features in Fourier space are non-local
4. Can use edge features in addition to node features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

Diagonal features in Fourier space are non-local
4. Can use edge features in addition to node features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

Diagonal features in Fourier space are non-local
4. Can use edge features in addition to node features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

- Diagonal features in Fourier space are non-local

4. Can use edge features in addition to node features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

- Diagonal features in Fourier space are non-local

4. Can use edge features in addition to node features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

- Diagonal features in Fourier space are non-local

4. Can use edge features in addition to node features

- Does not use edge features

Spectral graph convolution

How good is SpectralNet?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational and storage cost for Fourier transform is $\mathcal{O}\left(|V|^{2}\right)$

2. Parameter size independent of input size

- Parameter size is $|V|$

3. Use local information to construct hidden features

- Diagonal features in Fourier space are non-local

4. Can use edge features in addition to node features

- Does not use edge features

Graph Convolutional Networks

Alternatively, consider a "spatial" approach (Duvenaud et al. [3]):

$$
h_{v_{i}}^{l+1}=\sigma\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} W_{\left|\mathcal{N}_{i}\right|}^{l}\right), \quad v_{i} \in V .
$$

Graph Convolutional Networks

Alternatively, consider a "spatial" approach (Duvenaud et al. [3]):

$$
h_{v_{i}}^{l+1}=\sigma\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} W_{\left|\mathcal{N}_{i}\right|}^{l}\right), \quad v_{i} \in V .
$$

Kipf and Welling [4] introduced the Graph Convolutional Network (GCN):

$$
h_{v_{i}}^{l+1}=\operatorname{ReLU}\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} \frac{W^{l}}{\sqrt{\left|\mathcal{N}_{i}\right|\left|\mathscr{N}_{j}\right|}}\right), \quad v_{i} \in V
$$

Graph Convolutional Networks

Alternatively, consider a "spatial" approach (Duvenaud et al. [3]):

$$
h_{v_{i}}^{l+1}=\sigma\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} W_{\left|\mathcal{N}_{i}\right|}^{l}\right), \quad v_{i} \in V .
$$

Kipf and Welling [4] introduced the Graph Convolutional Network (GCN):

$$
h_{v_{i}}^{l+1}=\operatorname{ReLU}\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} \frac{W^{l}}{\sqrt{\left|\mathcal{N}_{i}\right|\left|\mathscr{N}_{j}\right|}}\right), \quad v_{i} \in V
$$

- Works well in practice

Graph Convolutional Networks

Alternatively, consider a "spatial" approach (Duvenaud et al. [3]):

$$
h_{v_{i}}^{l+1}=\sigma\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} W_{\left|\mathcal{N}_{i}\right|}^{l}\right), \quad v_{i} \in V .
$$

Kipf and Welling [4] introduced the Graph Convolutional Network (GCN):

$$
h_{v_{i}}^{l+1}=\operatorname{ReLU}\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} \frac{W^{l}}{\sqrt{\left|\mathcal{N}_{i}\right|\left|\mathcal{N}_{j}\right|}}\right), \quad v_{i} \in V
$$

- Works well in practice
- Can be derived from ChebNet [2], a variant of spectral graph convolution

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{i}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size
$>$ Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$
3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features

- Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size

- Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$

3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features

- Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size
$>$ Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$
3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features

- Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size

- Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$

3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features
\downarrow Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size

- Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$

3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features
\downarrow Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size

- Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$

3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features
\downarrow Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size

- Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$

3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features
\downarrow Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size

- Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$

3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features

- Does not use edge features in original formulation

Graph Convolutional Networks

How good is GCN?

1. $\mathcal{O}(|V|+|E|)$ computational and storage efficiency

- Computational cost is $\mathcal{O}(|V| C F)$ (multiplication $h_{v_{j}}^{l} W^{l}$ performed $|V|$ times)
- Storage cost is $\mathcal{O}(|E|)$ (to store adjacency matrix \mathbf{A})

2. Parameter size independent of input size

- Parameter size is $\mathcal{O}(C F)$ per layer to store $W^{l} \in \mathbb{R}^{C \times F}$

3. Use local information to construct hidden features

- By construction, hidden features only depend on local neighbours

4. Can use edge features in addition to node features

- Does not use edge features in original formulation

Semi-supervised learning

- Applies when the number of labelled datapoints are small
- But relations between labelled and unlabelled data exist

Semi-supervised learning

Experiment with Cora dataset:

- Use only 140 nodes for training data
- 1000 nodes for testing

Train with cross-entropy loss over labelled data \mathscr{D}_{L} (i.e. training data):

$$
L=-\sum_{(y, X) \in \mathscr{D}_{L}} y \log \mathrm{GCN}(X)
$$

Semi-supervised learning

Experiment with Cora dataset:

- Use only 140 nodes for training data
- 1000 nodes for testing

Train with cross-entropy loss over labelled data \mathscr{D}_{L} (i.e. training data):

$$
L=-\sum_{(y, X) \in \mathscr{D}_{L}} y \log \mathrm{GCN}(X)
$$

Kipf and Welling [4] reports accuracy of:

- 81.5% using GCN
- 55.1 \% using MLP

Message Passing Neural Networks

Neural Message Passing for Quantum Chemistry

Justin Gilmer ${ }^{1}$ Samuel S. Schoenholz ${ }^{1}$ Patrick F. Riley ${ }^{2}$ Oriol Vinyals ${ }^{3}$ George E. Dah1 ${ }^{1}$

Abstract
Supervised learning on molecules has incredible potential to be useful in chemistry, drug disovery, and materials science. Luckily, sevmodels invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and their entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them
or reach the limits of the approach In this per, we reformulate existing models into a single common framework we call Message Passing Neural Networks (MPNNs) and explore additional novel variations within this framework.
Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough hat we believe future work should focus on

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic mol
expensive DFT calculation.

Rupp et al., 2012; Rogers \& Hahn, 2010; Montavon et al 2012; Behler \& Parrinello, 2007; Schoenholz et al., 2016)
has revolved around feature engineering. While neural nethas revolved around feaure engineering. While neuran net-
works have been applied in a variety of situations (Merkwirth \& Lengauer, 2005; Micheli, 2009; Lusci et al., 2013

- Developed to predict properties of molecules
- Introduces a general framework for learning features on graphs based on message passing
- Can handle graph data containing both node and edge features

Recall the message passing protocol in BP:

Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right)=\psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right)
$$

Recall the message passing protocol in BP:

Message update:

$$
M_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j} \in\{1, \ldots, K\}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{j}\left(x_{j}\right) \prod_{k \sim j, k \neq i} M_{k \rightarrow j}\left(x_{j}\right),
$$

State update:

$$
p\left(x_{i}\right)=\psi_{i}\left(x_{i}\right) \prod_{j \sim i} M_{j \rightarrow i}\left(x_{i}\right)
$$

Message passing in MPNN [6]:
Layer 0
Layer 1
Layer 2
Message update:

$$
M_{j \rightarrow i}^{l}=M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)
$$

State update:

$$
h_{v_{i}}^{l+1}=U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)
$$

Readout:

$$
y=R_{\theta}\left(\left\{h_{v_{i}}^{L} \mid v_{i} \in V\right\}\right) .
$$

Message passing in MPNN [6]:
Layer 0
Layer 1
Layer 2
Message update:

$$
M_{j \rightarrow i}^{l}=M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)
$$

State update:

$$
h_{v_{i}}^{l+1}=U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)
$$

Readout:

$$
y=R_{\theta}\left(\left\{h_{v_{i}}^{L} \mid v_{i} \in V\right\}\right) .
$$

Message passing in MPNN [6]:
Message update:

$$
M_{j \rightarrow i}^{l}=M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)
$$

State update:

$$
h_{v_{i}}^{l+1}=U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)
$$

Readout:

$$
y=R_{\theta}\left(\left\{h_{v_{i}}^{L} \mid v_{i} \in V\right\}\right) .
$$

Message passing in MPNN [6]:
Message update:

$$
M_{j \rightarrow i}^{l}=M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)
$$

State update:

$$
h_{v_{i}}^{l+1}=U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)
$$

Readout:

$$
y=R_{\theta}\left(\left\{h_{v_{i}}^{L} \mid v_{i} \in V\right\}\right) .
$$

Message passing in MPNN [6]:
Message update:

$$
M_{j \rightarrow i}^{l}=M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)
$$

State update:

$$
h_{v_{i}}^{l+1}=U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)
$$

Readout:

$$
y=R_{\theta}\left(\left\{h_{v_{i}}^{L} \mid v_{i} \in V\right\}\right) .
$$

Most GNN architectures can be expressed as an MPNN!

Example 1: GCNs as MPNN

Recall the GCN architecture:

$$
h_{v_{i}}^{l+1}=\operatorname{ReLU}\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}}^{l} \frac{W^{l}}{\sqrt{\left|\mathcal{N}_{i}\right|\left|\mathcal{N}_{j}\right|}}\right), \quad v_{i} \in V .
$$

Example 1: GCNs as MPNN

Recall the GCN architecture:

$$
h_{v_{i}}^{l+1}=\operatorname{ReLU}\left(\sum_{j \in \mathcal{N}_{i}} h_{v_{j}} \frac{W^{l}}{\sqrt{\left|\mathcal{N}_{i}\right|\left|\mathcal{N}_{j}\right|}}\right), \quad v_{i} \in V .
$$

This can be expressed as an MPNN with:

- $M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)=\frac{1}{\sqrt{\left|\mathcal{N}_{i}\right|\left|\mathcal{N}_{j}\right|}} h_{v_{j}}^{l}$
$. U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)=\operatorname{ReLU}\left(\left(\frac{1}{\left|\mathcal{N}_{i}\right|} h_{v_{i}}^{l}+\sum_{j \sim i} M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)\right) W^{l}\right)$

Example 2: MPNN in Gilmer et al. [5]

The original work of Gilmer et al. [5] used the following MPNN model

- $M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)=\operatorname{MLP}\left(e_{i j}\right) h_{v_{j}}^{l}$
. $U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)=\operatorname{GRU}\left(h_{v_{i}}^{l}, \sum_{j \sim i} M_{j \rightarrow i}^{l}\right)$
to predict 13 quantum properties of molecules in the QM9 dataset.

Example 2: MPNN in Gilmer et al. [5]

The original work of Gilmer et al. [5] used the following MPNN model

- $M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)=\operatorname{MLP}\left(e_{i j}\right) h_{v_{j}}^{l}$
. $U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)=\operatorname{GRU}\left(h_{v_{i}}^{l}, \sum_{j \sim i} M_{j \rightarrow i}^{l}\right)$
to predict 13 quantum properties of molecules in the QM9 dataset.
Model performs extremely well with 11 out of 13 properties reaching "chemical accuracy".

Example 3: Transformers

MPNNs also encompass the transformer [9] model:

- $M_{\theta}^{l}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}, e_{i j}\right)=$ MultiheadAttention $\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}\right)$

$$
=\left\{w_{i j}^{k}\left(h_{v_{i}}^{l}, h_{v_{j}}^{l}\right), V_{j}^{k}\left(h_{v_{j}}^{l}\right)\right\}_{k=1}^{K}
$$

. $U_{\theta}^{l}\left(h_{v_{i}}^{l}, \square_{j \sim i} M_{j \rightarrow i}^{l}\right)=\operatorname{LN}\left(\operatorname{MLP}\left(\operatorname{LN}\left(\sum_{j \sim i} w_{i j}^{k} V_{j}^{k}\right)\right)\right)$
where the graph is assumed to be fully-connected.
(See blogpost [8] for more details)

Image from [8]

Comparison of MPNN with LBP

LBP	MPNN
Bayesian. Coupling between neighbours arise from prior knowledge of model. Message passing rule follows from laws of probability.	Frequentist. Message and state update rules are learned from data to obtain useful feature representations.
Iterative. States are updated iteratively to obtain better estimates of marginals.	Deep. Uses the power of deep learning to extract increasingly complex features with depth.
Interpretable. Prior assumptions are usually quite simple, making predictions interpretable.	Flexible. Processes high-dimensional node and edge features easily to model complex relations between inputs and outputs.

Comparison of MPNN with LBP

LBP	MPNN
Bayesian. Coupling between neighbours arise from prior knowledge of model. Message passing rule follows from laws of probability.	Frequentist. Message and state update rules are learned from data to obtain useful feature representations.
Iterative. States are updated iteratively to obtain better estimates of marginals.	Deep. Uses the power of deep learning to extract increasingly complex features with depth.
Interpretable. Prior assumptions are usually quite simple, making predictions interpretable.	Flexible. Processes high-dimensional node and edge features easily to model complex relations between inputs and outputs.

Many recent works aim to combine benefits of both approaches ([10] - [14])!

References

[1] Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. "Spectral networks and deep locally connected networks on graphs." ICLR, 2014.
[2] Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast localized spectral filtering." NeurlPS, 2016.
[3] Duvenaud, David K., Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. "Convolutional networks on graphs for learning molecular fingerprints." NeurlPS, 2015.
[4] Welling, Max, and Thomas N. Kipf. "Semi-supervised classification with graph convolutional networks." ICLR, 2017.
[5] Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. "Neural message passing for quantum chemistry." ICML, 2017.

References

[6] PyTorch Geometric. "Creating Message Passing Networks": https://pytorchgeometric.readthedocs.io/en/latest/notes/create_gnn.html
[7] Sanchez-Lengeling, Benjamin, Emily Reif, Adam Pearce and Alexander B. Wiltschko, "A Gentle Introduction to Graph Neural Networks". Distill, 2021.
[8] Joshi, Chaitanya K. "Transformers are Graph Neural Networks", The Gradient, 2020.
[9] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS, 2017.
[10] Ying, Zhitao, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. "GNNexplainer: Generating explanations for graph neural networks." NeurlPS, 2019.

References

[11] Yoon, KiJung, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard Zemel, and Xaq Pitkow. "Inference in probabilistic graphical models by graph neural networks." 53rd Asilomar Conference on Signals, Systems, and Computers, 2019.
[12] Kuck, Jonathan, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish Sabharwal, and Stefano Ermon. "Belief propagation neural networks." NeurIPS, 2020.
[13] Wang, Binghui, Jinyuan Jia, and Neil Zhenqiang Gong. "Semi-Supervised Node Classification on Graphs: Markov Random Fields vs. Graph Neural Networks." AAAI, 2021.
[14] Satorras, Victor Garcia, and Max Welling. "Neural enhanced belief propagation on factor graphs." AISTATS, 2021.
[15] Hua, Chenqing, Sitao Luan, Qian Zhang and Jie Fu. "Graph Neural Networks Intersect Probabilistic Graphical Models: A Survey." arXiv preprint arXiv:2206.06089, 2022.

