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A Graph is a collection  of 

• : nodes 

• : edges 

such that an edge  can be associated with a pair of nodes . 

(V, E)
V
E

e ∈ E u, v ∈ V

What are graphs?

A graph

Node

Edge



• A graph is directed if the ordering of nodes associated to an edge “matters” 

i.e.,  mapping an edge to an ordered tuple of nodes. ∃ ϕ : E → V × V

A directed graph

Node

Edge



• A graph is directed if the ordering of nodes associated to an edge “matters” 

i.e.,  mapping an edge to an ordered tuple of nodes. ∃ ϕ : E → V × V

A directed graph

Node

Edge

• Edges  in a directed graph represented graphically as arrowsϕ(e) = (a, b)

a

b

e



• A graph is directed if the ordering of nodes associated to an edge “matters” 

i.e.,  mapping an edge to an ordered tuple of nodes. ∃ ϕ : E → V × V

A directed graph

Node

Edge

• Edges  in a directed graph represented graphically as arrowsϕ(e) = (a, b)
• A graph is undirected if ordering of nodes in an edge doesn’t matter

a

b

e



• The edges  of a graph define an adjacency relation  on : 

For , 

. 

E ∼ V
x, y ∈ V

x ∼ y ⇔ {(x, y)} ∪ {(y, x)} ⊂ ϕ(E)
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• The edges  of a graph define an adjacency relation  on : 

For , 

. 

E ∼ V
x, y ∈ V

x ∼ y ⇔ {(x, y)} ∪ {(y, x)} ⊂ ϕ(E)

x1

x2

x3

x4

x5

On the graph on the left, we have e.g. 

•  

•  

•  

•

x1 ∼ x2

x4 ∼ x5

x1 ≁ x4

x3 ≁ x5

• If , we say that  is a neighbour of  and vice versa x ∼ y y x



• Adjacency matrix  encodes the adjacency structure of : 

  

• Degree matrix  encodes the degree of connectivity of each node: 

 

A G

Aij = {
1, if xi ∼ xj,
0, if xi ≁ xj .

D

Dij = { |Neighbours(xi) | , if i = j,
0, if i ≠ j .
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• Degree matrix  encodes the degree of connectivity of each node: 

 

A G

Aij = {
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• Adjacency matrix  encodes the adjacency structure of : 

  

• Degree matrix  encodes the degree of connectivity of each node: 

 

A G

Aij = {
1, if xi ∼ xj,
0, if xi ≁ xj .

D

Dij = { |Neighbours(xi) | , if i = j,
0, if i ≠ j .

x1 x2

x3 A = (
0 0 1
0 0 1
1 1 0)

 D = (
1 0 0
0 1 0
0 0 2)
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Types of Graphs
3. Trees and polytrees

• A tree is an undirected graph such that two 
nodes are connected by a unique path

• A polytree is a DAG such that its underlying 
structure is a tree

• Designating node  as a “root”, we say that 
node  is a parent of node  if it is a 
neighbouring node on the path to 

a
b c

a
• Likewise  is a child of  if  is it’s parentd c c

“Root”
a

b

c

d

“Parent of c”

“Child of c”



Types of Graphs
4. Bipartite graphs



Types of Graphs
4. Bipartite graphs

• Nodes can be divided into two “classes” 

(say A and B)

• Each edge connects a node in A with a node 

in B

• Can be either directed or undirected

A B
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Types of Graphs
5. Subgraphs

Let  be a graph.G = (V, E)

• A subgraph  of  is a graph 

such that  and 

G1 = (V1, E1) G

V1 ⊂ V E1 ⊂ E
• If a subgraph is fully-connected, then we call 

it a clique



Message passing
Algorithms defined on graphs where information is passed between neighbours



Topics covered in this lecture
1. Probabilistic graphical models (PGMs) 

2. Belief propagation on PGMs 

3. Some extensions of belief propagation 

4. Message passing neural networks



Supplementary materials
• Github link: https://github.com/sotakao/ml-seminar-ucl 

• References provided at the end of each section 

• See Bishop’s book [1] for necessary background in graphs and probability theory 

[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: 
springer, 2006. 

https://github.com/sotakao/ml-seminar-ucl


1. Probabilistic Graphical Models (PGMs)
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Example

 
p(x1, x2, x3, x4, x5, x6, x7) = p(x1) p(x2) p(x3) p(x4 |x1, x2, x3)

p(x5 |x1, x3) p(x6 |x4) p(x7 |x4, x5)

Questions:
• If  is observed, are the variables  and  independent?x4 x2 x6

i.e.,      p(x2, x6 |x4) = p(x2 |x4) p(x6 |x4)
• Which variable should we observe for  and  to be independent?x6 x7

i.e.,      p(x6, x7 |?) = p(x6 |?) p(x7 |?)
PGMs provide elegant answers to such questions!

?
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Bayesian Networks
Bayesian networks (BN) visualise how a 
joint probability distribution factorises into 
conditional probability distributions
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Independence

Two nodes are independent if there are no paths connecting them

x1 x2

x3 x4

p(x1, x2, x3, x4) = p(x4) p(x3 |x1, x2) p(x2 |x1) p(x1)
= p(x4) p(x1, x2, x3)

              is independent of all other nodesx4
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d-Separation and conditional independence

Two nodes a and b in a DAG are d-separated by a set of nodes Z if and only if 
any loop-free path from a to b satisfies one of the following:

1.                                                  

2.  

3.

Property: variables a, b are independent given Z  they are d-separated by Z⇔

a bc

a bc

a bc

Path contains a chain and c belongs to Z.

Path contains a fork and c belongs to Z.

Path contains a collider and c does not belong to Z. 
In addition, no descendant of c belongs to Z.



Example of d-separation

 and  are d-separated by  becausea b c
a

c b



Example of d-separation

 and  are d-separated by  becausea b c
1.  is sandwiched by a chain in the pathca

c b

a bc



Example of d-separation

 and  are d-separated by  becausea b c
1.  is sandwiched by a chain in the pathca

c b

“Chain”

a bc



Example of d-separation

 and  are d-separated by  because 

1.  is sandwiched by a chain in the path 

2.  is sandwiched by a chain in the path 

a b c
c

c

a

c b

a bc

bca



Example of d-separation

 and  are d-separated by  because 

1.  is sandwiched by a chain in the path 

2.  is sandwiched by a chain in the path 

a b c
c

c

a

c b

“Chain”

a bc

bca



a b

c

Non-example of d-separation

Nodes  and  are not d-separated by a b c
(i.e.,  and  are d-connected)a b
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c

Non-example of d-separation

Nodes  and  are not d-separated by a b c
(i.e.,  and  are d-connected)a b
because

a b

c



a b

c

Non-example of d-separation

Nodes  and  are not d-separated by a b c
(i.e.,  and  are d-connected)a b
because

contains a collider and  is a descendant of 
the collider node

c“Collider”

a b

c
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Hammersley-Clifford Theorem

In MRFs, we can consider factorisations into potential functions :ψC(xC) ≥ 0

,p(x1, …, xn) ∝ ∏
C

ψC(xC)

where  is a clique of the graph*.C
Akin to factorising joint distributions into conditional distributions in BNs.

• Potential functions need not have a probabilistic interpretation
• Factorisation is not unique

*Recall that a clique is a fully-connected subgraph of a graph
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Example illustrating the Hammersley-Clifford theorem

x1 x2

x3 x4

= ψ12(x1, x2) ψ13(x1, x3) ψ23(x2, x3) ψ34(x3, x4)

2. Factorisation into pairwise cliques

p(x1, x2, x3, x4)



Example illustrating the Hammersley-Clifford theorem

x1 x2

x3 x4

= p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

3. Factorisation of Bayesian networks

p(x1, x2, x3, x4)



Example illustrating the Hammersley-Clifford theorem

x1 x2

x3 x4

= p(x4 |x3) p(x3 |x1, x2) p(x2 |x1) p(x1)

= ψ34(x3, x4) ψ123(x1, x2, x3) ψ12(x1, x2) ψ1(x1)

3. Factorisation of Bayesian networks

p(x1, x2, x3, x4)
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• MRFs do not represent BNs without altering the graph structure, e.g.

• Not all MRFs can be represented as a BN, e.g.

a

b c b and c are not conditionally 
independent given a 

{a, d} are conditionally independent
given {b, c} and vice-versa.
Cannot happen in a DAG.

a

b c

d

a

b c

“Moralise”
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Useful notations

• Plate notation

• Shaded vs. unshaded nodes

xi y
N

x1

xN

y
x2

z y

ObservedLatent



Examples of Bayesian networks
• Naive Bayes classifier 

• Hidden Markov model

• Bayesian linear regression

c xi

N

z1 z2 z3 z4

x1 x2 x3 x4

yi

fi

N

w b

xi

σ

yi = fi + ϵi, ϵi ∼ 𝒩(0,σ),
fi = wxi + b .



Examples of Markov random fields
• Spatial analysis / image processing [3,4] • Error-correcting codes [5]

y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

x5

x6

ψ134

ψ256

ψ135

ψ246
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marginal probabilities  on trees 

• Assume that the graph is tree-structured 

• Operate on factor graphs 
.

p(xi)

p(x) = ∏
i∈V

ψi(xi) ∏
(i, j)∈E
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ψ5(x5) ψ6(x6) ψ7(x7)

ψ35(x3, x5)
ψ46(x4, x6) ψ47(x4, x7)
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Step 1. Message update

Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

x2x2



Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

First, compute the message   :x1 → x2

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

Step 1. Message update
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Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

First, compute the message   :x1 → x2
M1→2(x2) = ∑

x1∈{1,…,K}

ψ12(x1, x2) ψ1(x1) ∏
k∼1,k≠2

Mk→1(x1)

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

Step 1. Message update
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Let’s say we want to compute .p(x2)
Recall the message update step:

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

First, compute the message   :x1 → x2
M1→2(x2) = ∑

x1∈{1,…,K}

ψ12(x1, x2) ψ1(x1) ∏
k∼1,k≠2

Mk→1(x1)

x1

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

??

Step 1. Message update

x2



Let’s say we want to compute . 
Recall the message update step: 

 

First, compute the message   : 
 

Rule: Ignore “incoming messages” to node  if there are none 

p(x2)

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

x1 → x2
M1→2(x2) = ∑

x1∈{1,…,K}

ψ12(x1, x2) ψ1(x1) ∏
k∼1,k≠2

Mk→1(x1)

i

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2) ψ12(x1, x2)

ψ1(x1)

Step 1. Message update



Next, compute the message   : x3 → x2
M3→2(x2) = ∑

x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3) ∏
k∼3,k≠2

Mk→3(x3)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

??

ψ23(x2, x3)

ψ3(x3)

Step 1. Message update



Next, compute the message   :x3 → x2

M3→2(x2) = ∑
x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3)M5→3(x3)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

M5→3(x3)

ψ23(x2, x3)

ψ3(x3)

ψ35(x3, x5)

ψ5(x5)

Step 1. Message update



Next, compute the message   :x3 → x2

M3→2(x2) = ∑
x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3)M5→3(x3)

M5→3(x3) = ∑
x5∈{1,…,K}

ψ35(x3, x5)ψ5(x5) ∏
k∼5,k≠3

Mk→5(x5)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

M5→3(x3)

ψ23(x2, x3)

ψ3(x3)

ψ35(x3, x5)

ψ5(x5)

Step 1. Message update



Next, compute the message   :x3 → x2

M3→2(x2) = ∑
x3∈{1,…,K}

ψ23(x2, x3) ψ3(x3)M5→3(x3)

M5→3(x3) = ∑
x5∈{1,…,K}

ψ35(x3, x5)ψ5(x5) ∏
k∼5,k≠3

Mk→5(x5)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

M5→3(x3)

ψ23(x2, x3)

ψ3(x3)

ψ35(x3, x5)

ψ5(x5)

Step 1. Message update



Finally, compute the message   : 
 

x4 → x2
M4→2(x2) = ∑

x4∈{1,…,K}

ψ24(x2, x4) ψ4(x4) ∏
k∼4,k≠2

Mk→4(x4)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

??

ψ24(x2, x4)

ψ4(x4)

Step 1. Message update



Finally, compute the message   :x4 → x2
M4→2(x2) = ∑

x4∈{1,…,K}

ψ24(x2, x4) ψ4(x4) M6→4(x4) M7→4(x4)
x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

ψ24(x2, x4)

ψ4(x4)

M6→4(x4) M7→4(x4)

Step 1. Message update



Finally, compute the message   :x4 → x2
M4→2(x2) = ∑

x4∈{1,…,K}

ψ24(x2, x4) ψ4(x4) M6→4(x4) M7→4(x4)

M6→4(x4) = ∑
x6∈{1,…,K}

ψ46(x4, x6)ψ6(x6)

M7→4(x4) = ∑
x7∈{1,…,K}

ψ47(x4, x7)ψ7(x7)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

ψ24(x2, x4)

ψ4(x4)

M6→4(x4) M7→4(x4)

Step 1. Message update



Belief propagation algorithm
BP proceeds by iteratively updating: 
  

1. The “messages” between two nodes 
 

  
2. The “state” of each node 

  

Mj→i(xi) → ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) → ψi(xi)∏
j∼i

Mj→i(xi)

x1

x2

x3 x4

x5 x6 x7



Step 2. State update

Now we can compute : 

  

where 
 

 

p(x2)

p(x2) =
1
Z

ψ2(x2) × M1→2(x2) × M3→2(x2) × M4→2(x2)

Z = ∑
x2∈{1,…,K}

ψ2(x2) × M1→2(x2) × M3→2(x2) × M4→2(x2)

x1

x2

x3 x4

x5 x6 x7

M3→2(x2) M4→2(x2)

M1→2(x2)

ψ2(x2)



Efficient implementation
x1

x2

x3 x4

x5 x6 x7



Efficient implementation
Exploiting the tree-structure, we can 
compute all the marginals efficiently

x1

x2

x3 x4

x5 x6 x7



Step 0. Initialise x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 0. Initialise
• the states as

,p(xi) =
1
K

1

for all , andi ∈ V

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 0. Initialise
• the states as

,p(xi) =
1
K

1

for all , andi ∈ V
• the messages as

 Mj→i(xi) = 1
for all . (i, j) ∈ E

x1

x2

x3 x4

x5 x6 x7

Efficient implementation

1 1 1

1 1

1



x1

Efficient implementation
Step 1. Choose a “root” node and identify 
the corresponding “leaf” nodes 
Note: The leaves are the furthest descendants of the root

x2

x3 x4

x5 x6 x7



x1

Efficient implementation
Step 1. Choose a “root” node and identify 
the corresponding “leaf” nodes 
Note: The leaves are the furthest descendants of the root

x1

x2

x3 x4

x5 x6 x7



x1

Efficient implementation
Step 1. Choose a “root” node and identify 
the corresponding “leaf” nodes 
Note: The leaves are the furthest descendants of the root

x1

x2

x3 x4

x5 x6 x7



Step 2. Update 
• all messages propagating from the leaf 

nodes, and 
• all the states of their parent nodes

x1

x2

x3 x4

x5 x6 x7
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Step 2. Update 
• all messages propagating from the leaf 

nodes, and 
• all the states of their parent nodes

x1

x2

x3 x4

x5 x6 x7

M5→3(x3) M6→4(x4) M7→4(x4)

Efficient implementation



Step 2. Update 
• all messages propagating from the leaf 

nodes, and 
• all the states of their parent nodes

x1

x2

x3 x4

x5 x6 x7

M5→3(x3) M6→4(x4) M7→4(x4)

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root 

x1

x2

x3 x4

x5 x6 x7

Efficient implementation



Step 3. Update the messages and states 
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Step 3. Update the messages and states 
all the way up to the root

x1
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x3 x4

x5 x6 x7

M2→1(x1)

Efficient implementation



Step 3. Update the messages and states 
all the way up to the root

x1

x2

x3 x4

x5 x6 x7

M2→1(x1)

Efficient implementation
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Step 4. Do the same, starting from the root 
and going down to the leaves 
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Step 4. Do the same, starting from the root 
and going down to the leaves 
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Step 4. Do the same, starting from the root 
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x3 x4
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Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M3→5(x5) M4→6(x6) M4→7(x7)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

M3→5(x5) M4→6(x6) M4→7(x7)

Efficient implementation



Step 4. Do the same, starting from the root 
and going down to the leaves 

x1

x2

x3 x4

x5 x6 x7

Efficient implementation
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Remarks
• Guaranteed convergence after a single sweep!

• Linear complexity in  (not exponential!)N
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Remarks
• Guaranteed convergence after a single sweep!

• Linear complexity in  (not exponential!)N
• See example implementation in my GitHub
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x2

x3 x4

x5 x6 x7
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If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

Checklist
x1

x2

x3 x4

x5 x6 x7

p(x2 |x3) = ?
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x5

ψ35(x3, x5) |x3

ψ2(x2)

ψ5(x5)



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 
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1. The marginal likelihood  of observed data  
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factor graph to get 
p(x2 |x3)

x5

ψ35(x3, x5) |x3

ψ2(x2)

ψ5(x5)



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

Checklist
x1

x2

x4

x6 x7

ψ23(x2, x3) |x3

Run BP on this new 
factor graph to get 
p(x2 |x3)

x5

ψ35(x3, x5) |x3

ψ2(x2)

ψ5(x5)



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any  

4. The mode 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

x* = argmaxxp(x)

Checklist



If  is a tree, can we compute: 

1. The marginal likelihood  of observed data  

2. The marginal distribution  of latent variables 

3. The conditional distribution  for any  

4. The mode 

G = (V, E)

p(y)

p(z)

p(xi |xj) i, j ∈ V

x* = argmaxxp(x)

Checklist
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3. Some Extensions of Belief Propagation



Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

xi

xj

ψij(xi, xj)
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Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
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State update:
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Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

We assume that the graph is tree-structured.
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Recall the message passing protocol in BP:
Message update:

,Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

We assume that the graph is tree-structured.
What extensions can we consider?

xi

xj

ψij(xi, xj)



Extension 1. Continuous states



Extension 1. Continuous states
When states are continuous , we replace the sum by an integral:xi ∈ ℝd

Message update:

,Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)



Extension 1. Continuous states
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Extension 1. Continuous states
When states are continuous , we replace the sum by an integral:xi ∈ ℝd

Message update:
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ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

The integral is generally intractable, except in some cases.



Extension 1. Continuous states
When states are continuous , we replace the sum by an integral:xi ∈ ℝd

Message update:

,Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

State update:

.p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

The integral is generally intractable, except in some cases.
For e.g. Gaussian belief propagation.
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Properties of Gaussians:



Gaussian belief propagation

Properties of Gaussians:
1. Product of two Gaussians is Gaussian:

,𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)



Gaussian belief propagation

Properties of Gaussians:
1. Product of two Gaussians is Gaussian:

,𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)
where .c = C(A−1a + B−1b), C = (A−1 + B−1)−1



Gaussian belief propagation

Message update: 

, 

State update: 

. 

Mj→i(xi) = ∫ℝd

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj) dxj

p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)

Properties of Gaussians:
1. Product of two Gaussians is Gaussian:

,𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)
where .c = C(A−1a + B−1b), C = (A−1 + B−1)−1



Gaussian belief propagation

Properties of Gaussians: 
1. Product of two Gaussians is Gaussian: 

, 

where . 

𝒩(x |a, A) 𝒩(x |b, B) = 𝒩(x |c, C)
c = C(A−1a + B−1b), C = (A−1 + B−1)−1

Message update: 

, 

State update: 
. 

Mj→i(xi) = ∫ℝd

ψij(xi, xj) 𝒩(xj |a, A) dxj

p(xi) = 𝒩(xi |μi, Σi)



Gaussian belief propagation

Properties of Gaussians: 
2. Integral of Gaussians is Gaussian: 

i.)   , 

ii.)  .

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x′ |a, A) dx′ = 𝒩(x |Ha, HAHT + R)

∫ℝd

𝒩(x |Hx′ , R) 𝒩(x |a, A) dx = 𝒩(Hx′ |a, A + R)



Gaussian belief propagation

Properties of Gaussians: 
2. Integral of Gaussians is Gaussian: 

i.)   , 

ii.)  .

∫ℝd
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• Running only the forward sweep of BP is equivalent to the Kalman filter 
• Running a full BP is equivalent to the Rauch-Tung Striebel smoother
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A polytree is a directed tree

Note: factors are not necessarily pairwise!
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Extension 3. Polytrees and other graphs

On trees, the message passing updates read: 

Message update: 
, 

State update: 

. 

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) ∝ ψi(xi)∏
j∼i

Mj→i(xi)
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∏
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Extension 3. Polytrees and other graphs
We can apply the same update rules to more general graphs with loops. 
This is called Loopy Belief Propagation (LBP).

Message update (same as before): 

1.  

2.  

State update (same as before): 

.

μxj→fs(xj) = ∏
l∈ne(xj)\s

μfl→xj
(xj)

μfs→xi
(xi) = ∑

xj1
,…,xjM

fs(xi, xj1, …, xjM)
M

∏
k=1

μxjk→fs(xjk)

p(xi) = ∏
s∈ne(xi)

μfs→xi
(xi)

• LBP is iterative and can be 
started off by setting

,μx→f(x) = 1
for all variables  and factors .x f

• Updates can be done in parallel 
(flooding schedule).



Iteration 1

Implementation (flooding schedule)

x1 x2

x3 x4

True marginals

Approximate marginals



Iteration 1

Implementation (flooding schedule)

x1 x2

x3 x4

True marginals

Approximate marginals



Iteration 1

Implementation (flooding schedule)

x1 x2

x3 x4

True marginals

Approximate marginals



Iteration 1

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 1

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 1

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 2

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 2

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 2

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Iteration 3

x1 x2

x3 x4

Implementation (flooding schedule)

True marginals

Approximate marginals



Remarks



Remarks
• LBP does not have any convergence guarantee



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good
• On trees/polytrees, convergence is guaranteed



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good
• On trees/polytrees, convergence is guaranteed
• Some variations of LBP exists, most notably expectation propagation [4]:

• Approximates intractable distributions by a product of simpler ones
• Closeness is measured by the Kullback-Leibler (KL) divergence
• When applied to graphs, it generalises LBP [4]



Remarks
• LBP does not have any convergence guarantee
• But when it converges, the results are usually good
• On trees/polytrees, convergence is guaranteed
• Some variations of LBP exists, most notably expectation propagation [4]:

• Approximates intractable distributions by a product of simpler ones
• Closeness is measured by the Kullback-Leibler (KL) divergence
• When applied to graphs, it generalises LBP [4]

• LBP is closely related to Bethe free energy optimisation [5]
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Neural networks have dominated ML in the past decade. 
They are:
• Extremely flexible for modelling
• Able to process complex data structures
• Composed of simple, parallelisable components
• Automatically differentiable

h0 = x
hl+1 = ReLU(Whl + b), t = 0,…, L − 1
y = Softmax(WhL + b)
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Multilayer perceptron



A zoo of graphs in the real world



Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

A zoo of graphs in the real world

https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html


Social networks 
Image from: https://medium.com/
analytics-vidhya/social-network-

analytics-f082f4e21b16 

Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

A zoo of graphs in the real world

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html


Social networks 
Image from: https://medium.com/
analytics-vidhya/social-network-

analytics-f082f4e21b16 

Citation networks 
Image from: https://

graphsandnetworks.com/the-
cora-dataset/ 

Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

A zoo of graphs in the real world

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://graphsandnetworks.com/the-cora-dataset/
https://graphsandnetworks.com/the-cora-dataset/
https://graphsandnetworks.com/the-cora-dataset/
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/ch04.html


Social networks 
Image from: https://medium.com/
analytics-vidhya/social-network-

analytics-f082f4e21b16 

Citation networks 
Image from: https://

graphsandnetworks.com/the-
cora-dataset/ 

Molecules as graphs 
Image from: https://www.oreilly.com/

library/view/deep-learning-for/
9781492039822/ch04.html

Traffic networks 
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Example: Cora dataset

Overview of dataset: 
• 2708 ML publications 
• 5429 citation links 
• Node feature size: 1433 
• Seven classes 

Task: classify nodes according to topic
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Using MLP:
Do MLP classification with
• Node features as inputs
• Seven topics as outputs
However,
• This ignores relational information
• Data size is small
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Example: Cora dataset
Using belief propagation:
• Create a MRF with pairwise potential [12]

ψij(xi, xj) = {
0.9, xi = xj

0.0166..., xi ≠ xj

• Perform LBP to compute p(xi |xobs)
However,
• This does not consider node features
• Pairwise potential is arbitrary

Can we combine the benefits 
of both approaches?
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Convolutional neural networks
• Incorporates inductive bias of grid-inputs
• Sparse connectivity owing to local receptive field
• Shared parameters

Image from: https://en.wikipedia.org/wiki/Convolutional_neural_network 
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Criteria for an “ideal” graph NN

1.  computational and storage efficiency𝒪( |V | + |E | )

2. Parameter size independent of input size

3. Use local information to construct hidden features

4. Can use edge features in addition to node features
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Extending convolutions to graphs?
CNNs are based on discretisation of the convolution operator

 

f ⋆ ψθ(x) = ∫ℝ2

f(y) ψθ(x − y)dy

≈ ∑
y∈ℤ2

f(y)ψθ(x − y)

Convolution applies to grids

Can we define convolutions on graphs?
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Kipf and Welling [4] introduced the Graph Convolutional Network (GCN):

.hl+1
vi

= ReLU( ∑
j∈𝒩i

hl
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V

• Works well in practice
• Can be derived from ChebNet [2], a variant of spectral graph convolution



Graph Convolutional Networks
How good is GCN? 

1.  computational and storage efficiency 

Computational cost is  (multiplication  performed  times) 

Storage cost is  (to store adjacency matrix ) 
2. Parameter size independent of input size 

Parameter size is  per layer to store  
3. Use local information to construct hidden features 

By construction, hidden features only depend on local neighbours 
4. Can use edge features in addition to node features 

Does not use edge features in original formulation

𝒪( |V | + |E | )
𝒪( |V |CF) hl

vj
Wl |V |

𝒪( |E | ) A

𝒪(CF) Wl ∈ ℝC×F
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Semi-supervised learning
• Applies when the number of labelled datapoints are small 
• But relations between labelled and unlabelled data exist



Semi-supervised learning
Experiment with Cora dataset:
• Use only 140 nodes for training data
• 1000 nodes for testing

Train with cross-entropy loss over labelled data  (i.e. training data):𝒟L

.L = − ∑
(y,X)∈𝒟L

y log GCN(X)



Semi-supervised learning
Experiment with Cora dataset:
• Use only 140 nodes for training data
• 1000 nodes for testing

Train with cross-entropy loss over labelled data  (i.e. training data):𝒟L

.L = − ∑
(y,X)∈𝒟L

y log GCN(X)

Kipf and Welling [4] reports accuracy of:

• using GCN81.5 %
• using MLP55.1 %



Message Passing Neural Networks

Gilmer et. al. [5] (ICML, 2017)

• Developed to predict properties 
of molecules 

• Introduces a general framework 
for learning features on graphs 
based on message passing 

• Can handle graph data 
containing both node and edge 
features



Recall the message passing protocol in BP: 
Message update: 

, 

State update: 

. 

Mj→i(xi) = ∑
xj∈{1,…,K}

ψij(xi, xj) ψj(xj) ∏
k∼j,k≠i

Mk→j(xj)

p(xi) = ψi(xi)∏
j∼i

Mj→i(xi)
xi

xj

ψij(xi, xj)
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Message passing in MPNN [6]:
Message update:

 Ml
j→i = Ml

θ(h
l
vi
, hl

vj
, eij),

State update:

.hl+1
vi

= Ul
θ(h

l
vi
, □j∼i Ml

j→i)

Readout:

.y = Rθ({hL
vi

|vi ∈ V}) Image from: https://distill.pub/2021/gnn-intro/ 
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Message passing in MPNN [6]:
Message update:

 Ml
j→i = Ml

θ(h
l
vi
, hl

vj
, eij),

State update:

.hl+1
vi

= Ul
θ(h

l
vi
, □j∼i Ml

j→i)

Readout:

.y = Rθ({hL
vi

|vi ∈ V})

Most GNN architectures can be expressed as an MPNN!

Image from: https://distill.pub/2021/gnn-intro/ 
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Example 1: GCNs as MPNN
Recall the GCN architecture:

.hl+1
vi

= ReLU( ∑
j∈𝒩i

h l
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V



Example 1: GCNs as MPNN
Recall the GCN architecture:

.hl+1
vi

= ReLU( ∑
j∈𝒩i

h l
vj

Wl

|𝒩i | |𝒩j | ), vi ∈ V

This can be expressed as an MPNN with:

•
Ml

θ(h
l
vi
, hl

vj
, eij) =

1

|𝒩i | |𝒩j |
hl

vj

•
Ul

θ(h
l
vi
, □j∼i Ml

j→i) = ReLU(( 1
|𝒩i |

hl
vi

+ ∑
j∼i

Ml
θ(h

l
vi
, hl

vj
, eij))Wl)



Example 2: MPNN in Gilmer et al. [5]
The original work of Gilmer et al. [5] used the following MPNN model

• Ml
θ(h

l
vi
, hl

vj
, eij) = MLP(eij) hl

vj

•
Ul

θ(h
l
vi
, □j∼i Ml

j→i) = GRU(hl
vi
, ∑

j∼i

Ml
j→i)

to predict 13 quantum properties of molecules in the QM9 dataset.



Example 2: MPNN in Gilmer et al. [5]
The original work of Gilmer et al. [5] used the following MPNN model

• Ml
θ(h

l
vi
, hl

vj
, eij) = MLP(eij) hl

vj

•
Ul

θ(h
l
vi
, □j∼i Ml

j→i) = GRU(hl
vi
, ∑

j∼i

Ml
j→i)

to predict 13 quantum properties of molecules in the QM9 dataset.
Model performs extremely well with 11 out of 13 properties reaching 
“chemical accuracy”.



Example 3: Transformers
MPNNs also encompass the transformer [9] model: 

•  

 

•
 

where the graph is assumed to be fully-connected. 
(See blogpost [8] for more details)

Ml
θ(h

l
vi
, hl

vj
, eij) = MultiheadAttention(hl

vi
, hl

vj
)

= {wk
ij(h

l
vi
, hl

vj
), Vk

j (hl
vj
)}K

k=1

Ul
θ(h

l
vi
, □j∼i Ml

j→i) = LN(MLP(LN(∑
j∼i

wk
ij Vk

j )))

Image from [8]



Comparison of MPNN with LBP
LBP MPNN
Bayesian. Coupling between neighbours arise 
from prior knowledge of model. Message passing 
rule follows from laws of probability. 

Frequentist. Message and state update rules 
are learned from data to obtain useful feature 
representations.

Iterative. States are updated iteratively to obtain 
better estimates of marginals. 

Deep. Uses the power of deep learning to  
extract increasingly complex features with depth.

Interpretable. Prior assumptions are usually 
quite simple, making predictions interpretable.

Flexible. Processes high-dimensional node and 
edge features easily to model complex relations 
between inputs and outputs. 



Comparison of MPNN with LBP
LBP MPNN
Bayesian. Coupling between neighbours arise 
from prior knowledge of model. Message passing 
rule follows from laws of probability. 

Frequentist. Message and state update rules 
are learned from data to obtain useful feature 
representations.

Iterative. States are updated iteratively to obtain 
better estimates of marginals. 

Deep. Uses the power of deep learning to  
extract increasingly complex features with depth.

Interpretable. Prior assumptions are usually 
quite simple, making predictions interpretable.

Flexible. Processes high-dimensional node and 
edge features easily to model complex relations 
between inputs and outputs. 

Many recent works aim to combine benefits of both approaches ([10] - [14])!
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