Numerical Integration

Cheng Soon Ong
Marc Peter Deisenroth

December 2020

Setting

- Approximate

$$
\int_{a}^{b} f(x) d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right), \quad x \in \mathbb{R}
$$

- Nodes x_{n} and corresponding function values $f\left(x_{n}\right)$

Numerical integration (quadrature)

Key idea

Approximate f using an interpolating function that is easy to integrate (e.g., polynomial)

Quadrature approaches

Quadrature	Interpolant	Nodes
Newton-Cotes	low-degree polynomials	equidistant
Gaussian	orthogonal polynomials	roots of polynomial
Bayesian	Gaussian process	user defined

Newton-Cotes Quadrature

Overview

- Equidistant nodes $a=x_{0}, \ldots, x_{N}=b \triangleq$ Partition interval $[a, b]$
- Approximate f in each partition with a low-degree polynomial

Overview

- Equidistant nodes $a=x_{0}, \ldots, x_{N}=b \triangleq$ Partition interval $[a, b]$
- Approximate f in each partition with a low-degree polynomial
- Compute integral for each partition analytically and sum them up

Trapezoidal rule

- Partition $[a, b]$ into N segments with equidistant nodes x_{n}
- Locally linear approximation of f between nodes

Trapezoidal rule (2)

- Area of a trapezoid with corners

$$
\begin{aligned}
& \left(x_{n}, x_{n+1}, f\left(x_{n+1}\right), f\left(x_{n}\right)\right) \\
& \quad \int_{x_{n}}^{x_{n+1}} f(x) d x \approx \frac{h}{2}\left(f\left(x_{n}\right)+f\left(x_{n+1}\right)\right) \\
& \quad h:=\left|x_{n+1}-x_{n}\right| \quad \mapsto \text { Distance between nodes }
\end{aligned}
$$

Trapezoidal rule (2)

- Area of a trapezoid with corners

$$
\begin{aligned}
& \left(x_{n}, x_{n+1}, f\left(x_{n+1}\right), f\left(x_{n}\right)\right) \\
& \quad \int_{x_{n}}^{x_{n+1}} f(x) d x \approx \frac{h}{2}\left(f\left(x_{n}\right)+f\left(x_{n+1}\right)\right) \\
& \quad h:=\left|x_{n+1}-x_{n}\right| \quad \mapsto \text { Distance between nodes }
\end{aligned}
$$

- Error $\mathcal{O}\left(h^{2}\right)$

Trapezoidal rule (2)

- Area of a trapezoid with corners

$$
\begin{aligned}
& \left(x_{n}, x_{n+1}, f\left(x_{n+1}\right), f\left(x_{n}\right)\right) \\
& \quad \int_{x_{n}}^{x_{n+1}} f(x) d x \approx \frac{h}{2}\left(f\left(x_{n}\right)+f\left(x_{n+1}\right)\right) \\
& \quad h:=\left|x_{n+1}-x_{n}\right| \quad \mapsto \text { Distance between nodes }
\end{aligned}
$$

- Error $\mathcal{O}\left(h^{2}\right)$
- Full integral:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left(f_{0}+2 f_{1}+\cdots+2 f_{N-1}+f_{N}\right), \quad f_{n}:=f\left(x_{n}\right)
$$

Simpson's rule

- Partition $[a, b]$ into N segments with equidistant nodes x_{n}
- Locally quadratic approximation of f connecting triplets $\left(f\left(x_{n-1}\right), f\left(x_{n}\right), f\left(x_{n+1}\right)\right)$

Simpson's rule (2)

- Area of segment:

$$
\begin{aligned}
& \int_{x_{n-1}}^{x_{n+1}} f(x) d x \approx \frac{h}{3}\left(f_{n-1}+4 f_{n}+f_{n+1}\right) \\
& h:=\left|x_{n+1}-x_{n}\right| \quad \mapsto \text { Distance between nodes }
\end{aligned}
$$

Simpson's rule (2)

- Area of segment:

$$
\begin{aligned}
& \int_{x_{n-1}}^{x_{n+1}} f(x) d x \approx \frac{h}{3}\left(f_{n-1}+4 f_{n}+f_{n+1}\right) \\
& h:=\left|x_{n+1}-x_{n}\right| \quad \mapsto \text { Distance between nodes }
\end{aligned}
$$

- Error: $\mathcal{O}\left(h^{4}\right)$

Simpson's rule (2)

- Area of segment:

$$
\begin{aligned}
& \int_{x_{n-1}}^{x_{n+1}} f(x) d x \approx \frac{h}{3}\left(f_{n-1}+4 f_{n}+f_{n+1}\right) \\
& h:=\left|x_{n+1}-x_{n}\right| \quad \mapsto \text { Distance between nodes }
\end{aligned}
$$

- Error: $\mathcal{O}\left(h^{4}\right)$
- Full integral:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+2 f_{4}+\cdots+2 f_{N-2}+4 f_{N-1}+f_{N}\right)
$$

Example

$$
\int_{0}^{1} \exp \left(-x^{2}-\sin (3 x)^{2}\right) d x
$$

Example

$$
\int_{0}^{1} \exp \left(-x^{2}-\sin (3 x)^{2}\right) d x
$$

- Simpson's rule yields better approximations
- Very good approximations obtained fairly quickly

Summary: Newton-Cotes quadrature

- Approximate integrand between equidistant nodes with a low-degree polynomial (up to degree 6)
- Trapezoidal rule: linear interpolation
- Simpson's rule: quadratic interpolation

Better approximation and smaller integration error

Gaussian Quadrature

Gaussian quadrature

- Named after Carl Friedrich Gauß

Gaussian quadrature

- Named after Carl Friedrich Gauß
- Quadrature scheme that no longer relies on equidistant nodes Higher accuracy

Gaussian quadrature

- Named after Carl Friedrich Gauß
- Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
- Central approximation

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

Gaussian quadrature

- Named after Carl Friedrich Gauß
- Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
- Central approximation

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

- Weight function $w(x) \geq 0$ (and some other integration-related properties, which are satisfied if $w(x)$ is a pdf)

Gaussian quadrature

- Named after Carl Friedrich Gauß
- Quadrature scheme that no longer relies on equidistant nodes Higher accuracy
- Central approximation

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

- Weight function $w(x) \geq 0$ (and some other integration-related properties, which are satisfied if $w(x)$ is a pdf)
- Goal: Find nodes x_{n} and weights w_{n}, so that the approximation error is minimized

Central idea

- Quadrature nodes x_{n} are the roots of a family of orthogonal polynomials

Central idea

- Quadrature nodes x_{n} are the roots of a family of orthogonal polynomials ω Nodes no longer equidistant

Central idea

- Quadrature nodes x_{n} are the roots of a family of orthogonal polynomials ω Nodes no longer equidistant
- Exact if f is a polynomial of degree $\leq 2 N-1$, i.e.,

$$
\int_{a}^{b} f(x) w(x) d x=\sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

- Integral can be computed exactly by evaluating $f N$ times at the optimal locations x_{n} (roots of an orthogonal polynomial) with corresponding optimal weights w_{n}

Central idea

- Quadrature nodes x_{n} are the roots of a family of orthogonal polynomials \mapsto Nodes no longer equidistant
- Exact if f is a polynomial of degree $\leq 2 N-1$, i.e.,

$$
\int_{a}^{b} f(x) w(x) d x=\sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

\downarrow Integral can be computed exactly by evaluating $f N$ times at the optimal locations x_{n} (roots of an orthogonal polynomial) with corresponding optimal weights w_{n}
M More accurate than Newton-Cotes for the same number of evaluations (with some memory overhead)

Example: Gauß-Hermite quadrature

- Solve

$$
\begin{aligned}
\int f(x) \underset{w(x)}{\exp \left(-x^{2}\right)} d x & =\int f(x) \frac{\sqrt{2 \pi}}{\exp \left(-x^{2} / 2\right)} \mathcal{N}(x \mid 0,1) d x \\
& =\sqrt{2 \pi} \mathbb{E}_{x \sim \mathcal{N}(0,1)}\left[\frac{f(x)}{\exp \left(-x^{2} / 2\right)}\right]
\end{aligned}
$$

Example: Gauß-Hermite quadrature

- Solve

$$
\begin{aligned}
\int f(x) \underbrace{\exp \left(-x^{2}\right)}_{w(x)} d x & =\int f(x) \frac{\sqrt{2 \pi}}{\exp \left(-x^{2} / 2\right)} \mathcal{N}(x \mid 0,1) d x \\
& =\sqrt{2 \pi} \mathbb{E}_{x \sim \mathcal{N}(0,1)}\left[\frac{f(x)}{\exp \left(-x^{2} / 2\right)}\right]
\end{aligned}
$$

- With change-of-variables trick Expectation w.r.t. a Gaussian measure

$$
\mathbb{E}_{x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)}[f(x)] \approx \frac{1}{\sqrt{\pi}} \sum_{n=1}^{N} w_{n} f\left(\sqrt{2} \sigma x_{n}+\mu\right)
$$

Example: Gauß-Hermite quadrature (2)

- Follow general approximation scheme

$$
\int f(x) \underset{w(x)}{\exp \left(-x^{2}\right)} d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

Example: Gauß-Hermite quadrature (2)

- Follow general approximation scheme

$$
\int f(x) \underset{w(x)}{\exp \left(-x^{2}\right)} d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

- Nodes x_{1}, \ldots, x_{N} are the roots of Hermite polynomial

$$
H_{N}(x):=(-1)^{n} \exp \left(\frac{x^{2}}{2}\right) \frac{d^{n}}{d x^{n}} \exp \left(-x^{2}\right)
$$

Example: Gauß-Hermite quadrature (2)

- Follow general approximation scheme

$$
\int f(x) \underset{w(x)}{\exp \left(-x^{2}\right)} d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

- Nodes x_{1}, \ldots, x_{N} are the roots of Hermite polynomial

$$
H_{N}(x):=(-1)^{n} \exp \left(\frac{x^{2}}{2}\right) \frac{d^{n}}{d x^{n}} \exp \left(-x^{2}\right)
$$

- Weights w_{n} are

$$
w_{n}:=\frac{2^{N-1} N!\sqrt{\pi}}{N^{2} H_{N-1}^{2}\left(x_{n}\right)}
$$

Overview (Stoer \& Bulirsch, 2002)

$$
\int_{a}^{b} w(x) f(x) d x \approx \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

$[a, b]$	$w(x)$	Orthogonal polynomial
$[-1,1]$	1	Legendre polynomials
$[-1,1]$	$\left(1-x^{2}\right)^{-\frac{1}{2}}$	Chebychev polynomials
$[0, \infty]$	$\exp (-x)$	Laguerre polynomials
$[-\infty, \infty]$	$\exp \left(-x^{2}\right)$	Hermite polynomials

Application areas

- Probabilities for rectangular bivariate/trivariate Gaussian and t distributions (Genz, 2004)
- Integrating out (marginalizing) a few hyper-parameters in a latent-variable model (INLA; Rue et al., 2009)
- Predictions with a Gaussian process classifier (GPFlow; Matthews et al., 2017)

Summary: Gaussian quadrature

- Orthogonal polynomials to approximate f
- Nodes are the roots of the polynomial
- Higher accuracy than Newton-Cotes
- Method of choice for low-dimensional problems (1-3 dimensions)

Summary: Gaussian quadrature

- Orthogonal polynomials to approximate f
- Nodes are the roots of the polynomial
- Higher accuracy than Newton-Cotes
- Method of choice for low-dimensional problems (1-3 dimensions)
- Can't naturally deal with noisy observations
- Only works in low dimensions

Summary: Gaussian quadrature

- Orthogonal polynomials to approximate f
- Nodes are the roots of the polynomial
- Higher accuracy than Newton-Cotes
- Method of choice for low-dimensional problems (1-3 dimensions)
- Can't naturally deal with noisy observations
- Only works in low dimensions
- Approaches that scale better with dimensionality
ω Bayesian quadrature (up to ≈ 10 dimensions)
\geqslant Monte Carlo estimation (high dimensions)

Bayesian Quadrature

Bayesian quadrature: Setting and key idea

$$
Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{\boldsymbol{x} \sim p}[f(\boldsymbol{x})]
$$

- Function f is expensive to evaluate
- Integration in moderate (≤ 10) dimensions
- Deal with noisy function observations

Bayesian quadrature: Setting and key idea

$$
Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{\boldsymbol{x} \sim p}[f(\boldsymbol{x})]
$$

- Function f is expensive to evaluate
- Integration in moderate (≤ 10) dimensions
- Deal with noisy function observations

Key idea

- Phrase quadrature as a statistical inference problem

M Probabilistic numerics (e.g., Hennig et al., 2015; Briol et al., 2015)

- Estimate distribution on Z using a dataset $\mathcal{D}:=\left\{\left(\boldsymbol{x}_{1}, f\left(\boldsymbol{x}_{1}\right)\right), \ldots,\left(\boldsymbol{x}_{N}, f\left(\boldsymbol{x}_{N}\right)\right)\right\}$

Bayesian quadrature: How it works

$$
Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{\boldsymbol{x} \sim p}[f(\boldsymbol{x})]
$$

- Estimate distribution on Z using a dataset

$$
\mathcal{D}:=\left\{\left(\boldsymbol{x}_{1}, f\left(\boldsymbol{x}_{1}\right)\right), \ldots,\left(\boldsymbol{x}_{N}, f\left(\boldsymbol{x}_{N}\right)\right)\right\}
$$

Bayesian quadrature: How it works

$$
Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{\boldsymbol{x} \sim p}[f(\boldsymbol{x})]
$$

- Estimate distribution on Z using a dataset

$$
\mathcal{D}:=\left\{\left(\boldsymbol{x}_{1}, f\left(\boldsymbol{x}_{1}\right)\right), \ldots,\left(\boldsymbol{x}_{N}, f\left(\boldsymbol{x}_{N}\right)\right)\right\}
$$

- Place (Gaussian process) prior distribution on f and determine the posterior via Bayes' theorem (Diaconis 1988; O'Hagan 1991; Rasmussen \& Ghahramani 2003)
- Distribution on f induces a distribution on Z

Bayesian quadrature: How it works

$$
Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{\boldsymbol{x} \sim p}[f(\boldsymbol{x})]
$$

- Estimate distribution on Z using a dataset

$$
\mathcal{D}:=\left\{\left(\boldsymbol{x}_{1}, f\left(\boldsymbol{x}_{1}\right)\right), \ldots,\left(\boldsymbol{x}_{N}, f\left(\boldsymbol{x}_{N}\right)\right)\right\}
$$

- Place (Gaussian process) prior distribution on f and determine the posterior via Bayes' theorem (Diaconis 1988; O'Hagan 1991; Rasmussen \& Ghahramani 2003)
Distribution on f induces a distribution on Z

- Generalizes to noisy function observations

$$
y=f(\boldsymbol{x})+\epsilon
$$

Bayesian quadrature: Details

$$
\left.Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right), \quad f \sim G P(0, k)
$$

Bayesian quadrature: Details

$$
\left.Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right), \quad f \sim G P(0, k)
$$

- Exploit linearity of the integral (integral of a GP is another GP)

Bayesian quadrature: Details

$$
\left.Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right), \quad f \sim G P(0, k)
$$

- Exploit linearity of the integral (integral of a GP is another GP)

$$
\left.p(Z)=p\left(\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right)\right)=\mathcal{N}\left(Z \mid \mu_{Z}, \sigma_{Z}^{2}\right)
$$

Bayesian quadrature: Details

$$
\left.Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right), \quad f \sim G P(0, k)
$$

- Exploit linearity of the integral (integral of a GP is another GP)

$$
\begin{aligned}
p(Z) & \left.=p\left(\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right)\right)=\mathcal{N}\left(Z \mid \mu_{Z}, \sigma_{Z}^{2}\right) \\
\mu_{Z} & =\int \mu_{\text {post }}(x) p(x) d x=\mathbb{E}_{x}\left[\mu_{\text {post }}(x)\right]
\end{aligned}
$$

Bayesian quadrature: Details

$$
\left.Z:=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right), \quad f \sim G P(0, k)
$$

- Exploit linearity of the integral (integral of a GP is another GP)

$$
\begin{aligned}
p(Z) & \left.=p\left(\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}\right)\right)=\mathcal{N}\left(Z \mid \mu_{Z}, \sigma_{Z}^{2}\right) \\
\mu_{Z} & =\int \mu_{\text {post }}(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{\boldsymbol{x}}\left[\mu_{\text {post }}(\boldsymbol{x})\right] \\
\sigma_{Z}^{2} & =\iint k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime}=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime}}\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]
\end{aligned}
$$

Bayesian quadrature: Mean

$$
\mathbb{E}_{f}[Z]=\mu_{Z}=\underset{\substack{\text { expected } \\ \text { prexictive mean }}}{\mathbb{E}_{\boldsymbol{x} \sim p}\left[\mu_{\text {post }}(\boldsymbol{x})\right]}
$$

$$
\begin{aligned}
& Z=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x} \\
& f \sim G P(0, k) \\
& p(Z)=\mathcal{N}\left(Z \mid \mu_{Z}, \sigma_{Z}^{2}\right)
\end{aligned}
$$

$$
\text { Training data: } \boldsymbol{X}, \boldsymbol{y}
$$

Bayesian quadrature: Mean

$$
\begin{aligned}
\mathbb{E}_{f}[Z] & =\mu_{Z}=\overbrace{\substack{\text { expected } \\
\text { predictive mean }}}^{\mathbb{E}_{\boldsymbol{x} \sim p}\left[\mu_{\text {post }}(\boldsymbol{x})\right]} \\
\mu_{\text {post }}(\boldsymbol{x}) & =k(\boldsymbol{x}, \boldsymbol{X}) \underbrace{\boldsymbol{K}}_{=: \alpha} \boldsymbol{\boldsymbol { K } ^ { - 1 } \boldsymbol { y }}, \quad \boldsymbol{K}:=k(\boldsymbol{X}, \boldsymbol{X})
\end{aligned}
$$

$$
\begin{aligned}
& Z=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x} \\
& f \sim G P(0, k) \\
& p(Z)=\mathcal{N}\left(Z \mid \mu_{Z}, \sigma_{Z}^{2}\right) \\
& \text { Training data: } \boldsymbol{X}, \boldsymbol{y}
\end{aligned}
$$

Bayesian quadrature: Mean

$$
\begin{aligned}
& \mathbb{E}_{f}[Z]=\mu_{Z}=\stackrel{\substack{\text { expected } \\
\text { predictive mean } \\
\mathbb{E}_{\boldsymbol{x} \sim[}\left[\mu_{\text {post }}(\boldsymbol{x})\right]}}{Z=\int f(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}, ~} \\
& f \sim G P(0, k) \\
& p(Z)=\mathcal{N}\left(Z \mid \mu_{Z}, \sigma_{Z}^{2}\right) \\
& \text { Training data: } \boldsymbol{X}, \boldsymbol{y} \\
& \begin{aligned}
&=: \boldsymbol{z}^{\top} \\
& \mathbb{E}_{f}[Z]=\overparen{\int k(\boldsymbol{x}, \boldsymbol{X}) p(\boldsymbol{x}) d \boldsymbol{x}} \boldsymbol{\alpha}=\boldsymbol{z}^{\top} \boldsymbol{\alpha} \\
& z_{n}=\int k\left(\boldsymbol{x}, \boldsymbol{x}_{n}\right) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{\boldsymbol{x} \sim p}\left[k\left(\boldsymbol{x}, \boldsymbol{x}_{n}\right)\right]
\end{aligned} \\
& \mu_{\text {post }}(\boldsymbol{x})=k(\boldsymbol{x}, \boldsymbol{X}) \boldsymbol{K}_{=: \alpha}^{\boldsymbol{K}^{-1} \boldsymbol{y}}, \quad \boldsymbol{K}:=k(\boldsymbol{X}, \boldsymbol{X})
\end{aligned}
$$

Bayesian quadrature: Variance

$$
\mathbb{V}_{f}[Z]=\sigma_{Z}^{2}=\stackrel{\text { expected posterior covariance }}{\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]}
$$

Bayesian quadrature: Variance

$$
\begin{aligned}
\mathbb{V}_{f}[Z] & =\sigma_{Z}^{2}=\stackrel{\overbrace{\boldsymbol{E}} \boldsymbol{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]}{ } \\
& =\iiint_{\text {prior covariance }}^{k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)}-\underbrace{k(\boldsymbol{x}, \boldsymbol{X}) \boldsymbol{K}^{-1} k\left(\boldsymbol{X}, x^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime}}_{\text {information from training data }}
\end{aligned}
$$

Bayesian quadrature: Variance

$$
\begin{aligned}
\mathbb{V}_{f}[Z] & =\sigma_{Z}^{2}=\stackrel{\text { expected posterior covariance }}{\stackrel{\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]}{ }} \\
& =\iiint_{\text {prior covariance }}^{k\left(x, x^{\prime}\right)}-k(\boldsymbol{x}, \boldsymbol{X}) \boldsymbol{K}^{-1} k\left(\boldsymbol{X}, \boldsymbol{x}^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime} \\
& =\iint k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) p(x) p\left(x^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime} \\
& =\mathbb{E}_{x, x^{\prime}}\left[k\left(\boldsymbol{x}, x^{\prime}\right)\right]
\end{aligned}
$$

Bayesian quadrature: Variance

$$
\begin{aligned}
& \text { expected posterior covariance } \\
& \mathbb{V}_{f}[Z]=\sigma_{Z}^{2}=\overleftarrow{\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim}\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]} \\
& =\iint \underbrace{k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)}_{\text {prior covariance }}-\underbrace{k(\boldsymbol{x}, \boldsymbol{X}) \boldsymbol{K}^{-1} k\left(\boldsymbol{X}, \boldsymbol{x}^{\prime}\right)}_{\text {information from training data }} p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime} \\
& =\iint k\left(x, x^{\prime}\right) p(x) p\left(x^{\prime}\right) d x d x^{\prime}-\underbrace{\int k(\boldsymbol{x}, \boldsymbol{X}) p(\boldsymbol{x}) d \boldsymbol{x}}_{=\boldsymbol{z}^{\top}} \\
& =\mathbb{E}_{x, x^{\prime}}\left[k\left(x, x^{\prime}\right)\right]-\boldsymbol{z}^{\top}
\end{aligned}
$$

Bayesian quadrature: Variance

$$
\begin{aligned}
\mathbb{V}_{f}[Z] & =\sigma_{Z}^{2}=\stackrel{\text { expected posterior covariance }}{\stackrel{\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}}{ }\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]} \\
& =\iiint_{\text {prior covariance }} k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)-k(\boldsymbol{x}, \boldsymbol{X}) \boldsymbol{K}^{-1} k\left(\boldsymbol{X}, \boldsymbol{x}^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime} \\
& =\iint k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime}-\underbrace{\int}_{=\boldsymbol{z}^{\top}} k(\boldsymbol{x}, \boldsymbol{X}) p(\boldsymbol{x}) d \boldsymbol{x} \boldsymbol{K}^{-1} \\
& =\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime}}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]-\boldsymbol{z}^{\top} \boldsymbol{K}^{-1}
\end{aligned}
$$

Bayesian quadrature: Variance

$$
\begin{aligned}
\mathbb{V}_{f}[Z] & =\sigma_{Z}^{2}=\stackrel{\substack{\text { expected posterior covariance } \\
\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]}}{ } \\
& =\iint \underbrace{k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)}_{\text {prior covariance }}-\underbrace{k(\boldsymbol{x}, \boldsymbol{X}) \boldsymbol{K}^{-1} k\left(\boldsymbol{X}, \boldsymbol{x}^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime}}_{\text {information from training data }} \\
& =\iint k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) p(x) p\left(\boldsymbol{x}^{\prime}\right) d x d \boldsymbol{x}^{\prime}-\underbrace{\int k(\boldsymbol{x}, \boldsymbol{X}) p(\boldsymbol{x}) d \boldsymbol{x} \boldsymbol{K}^{-1} \underbrace{\int k\left(\boldsymbol{X}, \boldsymbol{x}^{\prime}\right) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}}_{=\boldsymbol{z}^{\prime}}}_{=\boldsymbol{z}^{\top}} \\
& =\mathbb{E}_{\boldsymbol{x}, x^{\prime}}\left[k\left(x, x^{\prime}\right)\right]-\boldsymbol{z}^{\top} \boldsymbol{K}^{-1} \boldsymbol{z}^{\prime}
\end{aligned}
$$

Bayesian quadrature: Variance

$$
\begin{aligned}
\mathbb{V}_{f}[Z] & =\sigma_{Z}^{2}=\stackrel{\substack{\text { expected posterior covariance } \\
\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k_{\text {post }}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]}}{ } \\
& =\iint \underbrace{k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)}_{\text {prior covariance }}-k(\boldsymbol{x}, \boldsymbol{X}) \boldsymbol{K}^{-1} k\left(\boldsymbol{X}, x^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime} \\
& =\iint k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) p(\boldsymbol{x}) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime}-\underbrace{\int \underbrace{\top} k(\boldsymbol{x}, \boldsymbol{X}) p(\boldsymbol{x}) d \boldsymbol{x} \boldsymbol{K}^{-1} \int_{=z^{\prime}} k\left(\boldsymbol{X}, x^{\prime}\right) p\left(x^{\prime}\right) d \boldsymbol{x}^{\prime}}_{=\boldsymbol{z}^{\top}} \\
& =\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime}}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]-\boldsymbol{z}^{\top} \boldsymbol{K}^{-1} \boldsymbol{z}^{\prime} \\
& =\mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime}}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]-\mathbb{E}_{\boldsymbol{x}}[k(\boldsymbol{x}, \boldsymbol{X})] \boldsymbol{K}^{-1} \mathbb{E}_{\boldsymbol{x}^{\prime}}\left[k\left(\boldsymbol{X}, \boldsymbol{x}^{\prime}\right)\right]
\end{aligned}
$$

Computing kernel expectations

$$
\mathbb{E}_{\boldsymbol{x} \sim p}[k(\boldsymbol{x}, \boldsymbol{X})], \quad \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]
$$

- Solve a different (easier) integration problem

Computing kernel expectations

$$
\mathbb{E}_{\boldsymbol{x} \sim p}[k(\boldsymbol{x}, \boldsymbol{X})], \quad \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]
$$

- Solve a different (easier) integration problem

	Input distribution p	
Kernel k	Gaussian	non-Gaussian
RBF/ polynomial/ trigonometric	analytical	analytical via
importance-sampling		
otherwise	Monte Carlo (numerical integration)	Monte Carlo (numerical integration)

Kernel expectations in other areas

$$
\mathbb{E}_{\boldsymbol{x} \sim p}[k(\boldsymbol{x}, \boldsymbol{X})], \quad \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]
$$

- Kernel MMD (e.g., Gretton et al., 2012)

from Gretton et al. (2012)

Kernel expectations in other areas

$$
\mathbb{E}_{\boldsymbol{x} \sim p}[k(\boldsymbol{x}, \boldsymbol{X})], \quad \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]
$$

- Kernel MMD (e.g., Gretton et al., 2012)
- Time-series analysis with Gaussian processes (e.g., Girard et al., 2003)

from Gretton et al. (2012)

Kernel expectations in other areas

$$
\mathbb{E}_{\boldsymbol{x} \sim p}[k(\boldsymbol{x}, \boldsymbol{X})], \quad \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]
$$

- Kernel MMD (e.g., Gretton et al., 2012)
- Time-series analysis with Gaussian processes (e.g., Girard et al., 2003)

from Gretton et al. (2012)

- Deep Gaussian processes (e.g., Damianou \& Lawrence, 2013)

from Salimbeni et al. (2019)

Kernel expectations in other areas

$$
\mathbb{E}_{\boldsymbol{x} \sim p}[k(\boldsymbol{x}, \boldsymbol{X})], \quad \mathbb{E}_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim p}\left[k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]
$$

- Kernel MMD (e.g., Gretton et al., 2012)
- Time-series analysis with Gaussian processes (e.g., Girard et al., 2003)
- Deep Gaussian processes (e.g., Damianou \& Lawrence, 2013)
- Model-based RL with Gaussian processes (e.g., Deisenroth \& Rasmussen, 2011)

from Gretton et al. (2012)

from Salimbeni et al. (2019)

from Girard et al. (2003)

from Deisenroth \& Rasmussen (2011)

Iterative procedure: Where to measure f next?

- Define an acquisition function (similar to Bayesian optimization)

Iterative procedure: Where to measure f next?

- Define an acquisition function (similar to Bayesian optimization)
- Example: Choose next node \boldsymbol{x}_{n+1} so that the variance of the estimator is reduced maximally (e.g., O'Hagan, 1991; Gunter et al., 2014)

$$
\boldsymbol{x}_{n+1}=\operatorname{argmax}_{\boldsymbol{x}_{*}} \underset{\substack{\text { current } \\ \text { variance }}}{\mathbb{V}[Z \mid \mathcal{D}]-\mathbb{E}_{y_{*}}\left[\mathbb{V}\left[Z \mid \mathcal{D} \cup\left\{\left(\mathscr{x}_{*}, y_{*}\right)\right\}\right]\right]}
$$

Example with EmuKit (Paleyes et al., 2019)

Compute

$$
Z=\int_{-3}^{3} e^{-x^{2}-\sin ^{2}(3 x)} d x
$$

Example with EmuKit (Paleyes et al., 2019)

Compute

$$
Z=\int_{-3}^{3} e^{-x^{2}-\sin ^{2}(3 x)} d x
$$

- Fit Gaussian process to observations $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ at nodes x_{1}, \ldots, x_{n}

Example with EmuKit (Paleyes et al., 2019)

Compute

$$
Z=\int_{-3}^{3} e^{-x^{2}-\sin ^{2}(3 x)} d x
$$

- Fit Gaussian process to observations $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ at nodes x_{1}, \ldots, x_{n}
- Determine $p(Z)$

Example with EmuKit (Paleyes et al., 2019)

Compute

$$
Z=\int_{-3}^{3} e^{-x^{2}-\sin ^{2}(3 x)} d x
$$

- Fit Gaussian process to observations $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ at nodes x_{1}, \ldots, x_{n}
- Determine $p(Z)$
- Find and include new measurement

1. Find optimal node x_{n+1} by maximizing an acquisition function
2. Evaluate integrand at x_{n+1}
3. Update GP with $\left(x_{n+1}, f\left(x_{n+1}\right)\right)$

Example with EmuKit (Paleyes et al., 2019)

Compute

$$
Z=\int_{-3}^{3} e^{-x^{2}-\sin ^{2}(3 x)} d x
$$

- Fit Gaussian process to observations $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ at nodes x_{1}, \ldots, x_{n}
- Determine $p(Z)$
- Find and include new measurement
- Compute updated $p(Z)$

Example with EmuKit (Paleyes et al., 2019)

Compute

$$
Z=\int_{-3}^{3} e^{-x^{2}-\sin ^{2}(3 x)} d x
$$

- Fit Gaussian process to observations $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ at nodes x_{1}, \ldots, x_{n}
- Determine $p(Z)$
- Find and include new measurement
- Compute updated $p(Z)$
- Repeat

Example with EmuKit (Paleyes et al., 2019)

Compute

$$
Z=\int_{-3}^{3} e^{-x^{2}-\sin ^{2}(3 x)} d x
$$

- Fit Gaussian process to observations $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ at nodes x_{1}, \ldots, x_{n}
- Determine $p(Z)$
- Find and include new measurement
- Compute updated $p(Z)$
- Repeat

Summary

- Central approximation

$$
\int f(\boldsymbol{x}) d \boldsymbol{x} \approx \sum_{n=1}^{N} w_{n} f\left(\boldsymbol{x}_{n}\right)
$$

- Newton-Cotes: Equidistant nodes \boldsymbol{x}_{n}, low-degree polynomial approximation of f
- Gaussian quadrature: Nodes \boldsymbol{x}_{n} as the roots of interpolating orthogonal polynomials of f
- Bayesian quadrature: Integration as a statistical inference problem; Global approximation of f using a Gaussian
 process; scales to moderate dimensions
ω Numerical integration is a really good idea in low dimensions

References

Briol, F.-X., Oates, C., Girolami, M., and Osborne, M. A. (2015). Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees. In Advances in Neural Information Processing Systems.
Cutler, M. and How, J. P. (2015). Efficient Reinforcement Learning for Robots using Informative Simulated Priors. In Proceedings of the International Conference on Robotics and Automation.
Damianou, A. and Lawrence, N. D. (2013). Deep Gaussian Processes. In Proceedings of the International Conference on Artificial Intelligence and Statistics.
Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian Processes for Data-Efficient Learning in Robotics and Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408-423.
Deisenroth, M. P. and Mohamed, S. (2012). Expectation Propagation in Gaussian Process Dynamical Systems. In Advances in Neural Information Processing Systems, pages 2618-2626.

References (cont.)

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In Proceedings of the International Conference on Machine Learning.
Deisenroth, M. P., Turner, R., Huber, M., Hanebeck, U. D., and Rasmussen, C. E. (2012). Robust Filtering and Smoothing with Gaussian Processes. IEEE Transactions on Automatic Control, 57(7):1865-1871.
Diaconis, P. (1988). Bayesian Numerical Analysis. Statistical Decision Theory and Related Topics IV, 1:163-175.

Eleftheriadis, S., Nicholson, T. F. W., Deisenroth, M. P., and Hensman, J. (2017). Identification of Gaussian Process State Space Models. In Advances in Neural Information Processing Systems.
Genz, A. (2004). Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities. Statistics and Computing, 14:251-260.

References (cont.)

Girard, A., Rasmussen, C. E., Quiñonero Candela, J., and Murray-Smith, R. (2003). Gaussian Process Priors with Uncertain Inputs-Application to Multiple-Step Ahead Time Series Forecasting. In Advances in Neural Information Processing Systems.
Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A Kernel Two-Sample Test. Journal of Machine Learning Research, 13(25):723-773.
Gunter, T., Osborne, M. A., Garnett, R., Hennig, P., and Roberts, S. J. (2014). Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature. In Advances in Neural Information Processing Systems.
Hennig, P., Osborne, M. A., and Girolami, M. (2015). Probabilistic numerics and uncertainty in computations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471:20150142.
Ko, J. and Fox, D. (2009). GP-BayesFilters: Bayesian Filtering using Gaussian Process Prediction and Observation Models. Autonomous Robots, 27(1):75-90.

References (cont.)

O'Hagan, A. (1991). Bayes-Hermite Quadrature. Journal of Statistical Planning and Inference, 29:245-260.
Paleyes, A., Pullin, M., Mahsereci, M., Lawrence, N., and González, J. (2019). Emulation of Physical Processes with Emukit. In Second Workshop on Machine Learning and the Physical Sciences, NeurIPS.
Salimbeni, H. and Deisenroth, M. P. (2017). Doubly Stochastic Variational Inference for Deep Gaussian Processes. In Advances in Neural Information Processing Systems.
Salimbeni, H., Dutordoir, V., Hensman, J., and Deisenroth, M. P. (2019). Deep Gaussian Processes with Importance-Weighted Variational Inference. In Proceedings of the International Conference on Machine Learning.
Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis. Texts in Applied Mathematics. Springer-Verlag, 3rd edition.

